
PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 91 NR 2/2015 93

Tomasz HYLA, Imed El FRAY, Witold MAĆKÓW,
 Jerzy PEJAŚ

West Pomeranian University of Technology, Szczecin

doi:10.15199/48.2015.02.23

Implementation of Pairing-Based Cryptographic Trust
Infrastructure in Mobile Environment

Abstract. Current trends in information system design show that users should have access to services provided by information system offered on
their mobile devices. Because many information systems store sensitive information, appropriate protection mechanisms must be deployed. This
paper presents the software libraries (APIs) that can be used to implement pairing-based systems on mobile devices. Variety of mobile devices
causes that is necessary to design a generic trust infrastructure that will allow to implement efficiently a system that uses parings. There are two
basic paradigms that can be used: client-server or cloud-based. The analysis of pros and cons of the architectures showed that it is faster and easier
to implement pairing application using cloud-based approach mainly because of the lower number of components required to implement, e.g., the
library containing pairing calculations must be only prepared for one operating system instead of many that are using different technologies. The
tests conducted using cloud-based demonstrator showed, that in case of documents signing and verification with auxiliary server instead of the
mobile device, the pairing calculation time is marginally short in relation to the required to retrieve documents from a remote location.

Streszczenie. Aktualne trendy w projektowaniu systemów informacyjnych pokazują, że użytkownik powinien mieć dostęp do usług systemów IT za
pomocą urządzeń mobilnych. W przypadku przechowywania informacji wrażliwej w systemach informacyjnych muszą być wdrożone odpowiednie
mechanizmy zabezpieczeń. W artykule zaprezentowano biblioteki programowe (API), umożliwiające implementacje systemów wykorzystujących
odwzorowania dwuliniowe na urządzeniach mobilnych. Różnorodność urządzeń mobilnych powoduje, że konieczne jest zaprojektowanie ogólnej
infrastruktury zaufania, w szczególności przy założeniu wykorzystania odwzorowań dwuliniowych. W artykule zostały przeanalizowane dwa
podstawowe podejścia bazujące na modelu klient-serwer i modelu bazującym na chmurze. Testy bazujące na demonstratorze wykorzystującym
model chmury pokazały, że czas obliczeń odwzorowania przy podpisywaniu i weryfikowaniu podpisu cyfrowego jest bardzo mały w stosunku do
czasu pobierania plików ze zdalnych serwerów. (Implementacja kryptograficznej infrastruktury zaufania opartej na odwzorowaniach
dwuliniowych w środowisku mobilnym).

Keywords: mobile device, bilinear pairing, trust infrastructure, cloud, digital signature.
Słowa kluczowe: urządzenie mobilne, odwzorowanie dwuliniowe, infrastruktura zaufania, chmura, podpis cyfrowy

1. Introduction

Nowadays people use hundreds of millions of mobile
devices like tablets or smartphones. Mobile devices often
contain sensitive information, e.g., personal data, address
books, files with valuable information (e.g., contracts,
orders, projects). The protection of such information is an
important feature of mobile device information system and
should be considered during the design of the appropriate
protection mechanisms.

Many new cryptographic methods are based on
pairings. A pairing is defined as a bilinear map between
elements of two finite, cyclic and additive groups G1 and G2
to a third finite cyclic group GT defined multiplicatively. Both
of G1 and G2 are of prime order q, as it is in the case of GT.
In practice, pairing ê allows to solve certain problem in one
group, even if the problem is said to be hard in an-other
group. Let (G1, +) and (GT,) be two cyclic groups of some
prime order q>2k for security parameter k N. The bilinear
pairing [1] is given as T11 GGG:ê and must satisfy the

following three properties:
1. Bilinearity: bQ,aPê = Q,abPê = abQ,Pê =

 abQ,Pê for all P, Q 1G and all a, b *
qZ ; this can

be restated in the following way: for P, Q, R 1G ,

 R,QPê = R,QêR,Pê and RQ,Pê =

 R,PêQ,Pê .

2. Non-degeneracy: some P, Q 1G exists such that

2G1Q,Pê ; in other words, if P and Q are two

primitive elements of G1, then Q,Pê is a generator

of G2.
3. Computability: given P, Q 1G , an efficient

algorithm computing Q,Pê exists.

This paper presents the software libraries that can be
used to implement pairing-based systems on mobile

devices. Variety of mobile devices causes that is necessary
to design a generic trust infrastructure that will allow to
implement efficiently a system that uses parings and have
the features similar to traditional Public Key Infrastructures
(PKIs). There are two basic approaches that can be used.
One that uses client-server paradigm and another one that
uses cloud approach.

The paper is organized as follows. Section 2 contains
description of pairing-based cryptographic libraries. Section
3 contains description of mPBC library. Next, Section 4
contains description of possible system architectures that
allows to verify and create signature using bilinear pairings.
The Section 4 also contains results from implementation of
demonstrator version of the IE-RCIBS scheme [2]. The
paper ends with conclusions.

2. Pairing-based cryptographic libraries

The first cryptographic library optimized for pairing-
based cryptography was PBC (Pairing-Based
Cryptography) library developed by Benjamin Lynn in C [3].
However, its performance is not optimal for all types of
bilinear mappings. The second and the most efficient
cryptographic library based on the bilinear mapping is
MIRACL (Multiprecision Integer and Rational Arithmetic
Cryptographic Library). MIRACL was developed in Ireland
by the research team under the direction of Michael Scott
[4]. This library is written in C/C++ and is widely used for
studies requiring high performance. Other popular libraries
that’s support bilinear pairings are RELIC [5] and
TEPLA(University of Tsukuba Elliptic Curve and Pairing
Library) [6].

The PBC library is a free C library built on the GMP
library, which performs the mathematical operations
underlying pairing-based cryptosystems. The PBC library is
designed to be the backbone of implementations of pairing-
based cryptosystems. It provides routines such as elliptic
curve generation, elliptic curve arithmetic and pairing
computation. Pairings times are reasonable and C language

94 PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 91 NR 2/2015

enables implementation on many operating systems
environment. The API is abstract enough that the PBC
library can be used even if the programmer possesses only
an elementary understanding of pairings [3].

MIRACL Crypto SDK – is a software library written in
C/C++ language, which is widely recognized by developers
as the best open source standard for ECC (Elliptic Curve
Cryptography). MIRACL enables to generate appropriate
curve based on bilinear mapping using Cocks-Pinch
method [7]. Since 2011 the library is commercial. Historical
creator of this library Michael Scott in 2012 founded a start-
up Certivox, aimed at promoting the use of a bilinear
mapping in everyday life.

RELIC is a modern cryptographic tool that puts great
emphasis on efficiency and flexibility [5]. It is used to create
tools and cryptographic security at different levels, using a
number of arithmetic calculations. RELIC Library is the main
part of the project implementation TinyPBC [8], [9]. RELIC
operates under the LGPL license, which allows commercial
usage.

TEPLA [6] is a library supporting the development of
applications or systems using cryptography based on
bilinear mapping working on different platforms. TEPLA is
also written in C. TEPLA the public library is open source
under the BSD license, which runs on Windows platforms,
Linux and MAC OS X.

One of the others libraries that’s supports pairing-based
calculations is Magma package [10]. Magma contains
bilinear mapping based on Weil and Tate pairings on elliptic
curves over finite fields. Apart from Weil and Tate pairings,
Magma contains Eta bilinear mapping over supersingular
curves of small characteristics, and bilinear mapping Ate of
large characteristics. Thanks to the similarity between
representations of Tate, Ate, and optimal Ate pairings, it is
possible to perform all calculations using Magma. Magma is
a very useful for testing newly developed codes. Another
mathematical library, Pari [11] written in C, also offers since
2011, calculations based on the bilinear mapping. There are
currently several other cryptographic libraries such as
CHARM [12], [13], PANDA [14], which uses MIRACL'a,
PBC or RELIC.

The MIRACL library is indicated mostly for tasks that go
beyond the academic ranges (purely commercial). MIRACL
supports a wide range of platforms, including: Intel, ARM,
Texas Instruments, Sun, Oracle, ATMEL, MIPS
TECHNOLOGIES, ANALOG DEVICES. The other two
libraries; RELIC and TEPLA have attractive features useful
to encrypt and decrypt messages. Starting with the basic
mathematical operations and ending with complicated
calculations. It can be noted, however, that RELIC has
much more features, modules, and protocols that increase
the range of possibilities for users of this library. Used in the
library TEPLA calculations have very short times, second
only to a few parameters PBC library, while the complexity
of these calculations provides the best security in
comparison to others. In turn, according to the tests [15],
both in the first case and in the second, the size of the
message and the encryption key greatly affect response
times and RELIC MIRACL library. In both cases, the library
RELIC has better results than MIRACL. According to the
above information, it can be confirmed that the MIRACL
library is better than the PBC, RELIC or TEPLA because it
provide more functionalities, the code is faster and more
transparent. MIRACL has a good performance and the use
of RAM and CPU is very low.

Miracle library is current global standard in relation to
the Elliptic Curve Cryptography over GF (p) and GF (2m).
MIRACL also includes over twenty cryptographic protocols
based on bilinear mapping. PBC Library is also suitable for

solutions related to cryptography based on bilinear mapping
and elliptic curves. PBC Library is fast and portable, and
offers a lot of functions and cryptographic methods. Both
libraries are very good, except that the PBC library is rather
recommended for academic assignments or those in which
it is not strictly put special emphasis on memory, CPU and
execution time. They can be used by people who are very
familiar with this type of cryptography and also those who
have less knowledge about it but they are interested in this
subject. The PBC library was chosen for the purpose of our
demonstrator software mainly because of its wide usage by
researchers of pairing-based cryptosystems and its open-
source licence.

3. mPBC Library

The mPBC (mobile Pairing-Based Cryptography) library
is written in C language and it uses PBC library developed
by B. Lynn (Fig. 1.). It contains implementation of
algorithms developed especially for MobInfoSec project
[16], i.e., IE-RCIBS scheme [2], CIBE-GAS scheme [17, 18]
and IE-CBE scheme [19] (hereinafter referred to as IE-SK-
CBE scheme). The library uses programing convention
used in PBC library and can be compiled using most of
available C compilers. The mPBC hides the pairing
calculation from users and provides high level API mainly
with functions form implemented schemes. Hence, mPBC
user does not need any knowledge about pairing-based
cryptography. It contains also data structure definitions,
import and export functions and tests that demonstrate
basic functionality. The mPBC purpose is to provide
implementation of cryptographic schemes that can be used
directly or indirectly on mobile devices.

CIBE‐GAS IE‐RCIBS IE‐SK‐CBE

mPBC

PBC

GMP

Fig.1. mPBC library components

The first module of mPBC contains IE-RCIBS scheme

[2]. Each signing entity that follows in accordance with the
scheme, creates a digital signature, which can be verified
directly using explicit certificate and indirectly only using an
implicit certificate. The scheme allows to sign a document in
on-line mode, i.e., a certificate verification is a part of
signing process. The scheme consists of 10 functions
(Setup, Create-User, Extract-Partial-Private-Key,
Certificate-Generate, Cert-Revoke, Set-Public-Key, Set-
Private-Key, Sign, Get-Cert-Status and Verify). Also data
structures and function that enables import and export from
binary files were included.

The second module is CIBE-GAS [17]. The CIBS-GAS
scheme is a certificate-based group-oriented encryption
scheme with an effective secret sharing scheme based on
general access structure and bilinear pairings. The CIBE-
GAS module contains also modified version of the scheme,
i.e., CIBE-GAS-H [18], which is designed to work with
arbitrary length messages while original CIBE-GAS scheme

PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 91 NR 2/2015 95

works with limited length messages only. CIBE-GAS
scheme consists of eight algorithms (Setup,
SetSecretValue, CertGen, SetPublicKey, ShareDistribution,
Encryption, Subdecryption, Decryption) which were mapped
to corresponding functions in the library module. Also,
appropriate data structures, e.g., CIBEGAS_Ciphertext,
CIBEGAS_SharePublicParams were created together with
auxiliary functions.

The third module of the library contains implementation
of IE-SK-CBE scheme. The IE-SK-CBE is an encryption
scheme that preserves all advantages of Certificate-Based
Public Key Cryptography (CB-PKC), i.e., every user is
given, by the Trust Authority (TA), an implicit certificate as a
part of a private key and generates his own secret key as
well as corresponding public key. In addition, in the IE-CBE
scheme the TA has to generate an explicit certificate for a
user with some identity and a public key. The implicit and
explicit certificates are related with each other in such a way
that no one, even the entity of those certificates and their
issuer (TA authority) should not be able to recreate an
implicit certificate using the explicit certificate. The scheme
consist of eight algorithms (Setup, Create-User, Extract-
Partial-Private-Key, Certificate-Generate, Set-Public-Key,
Set-Private-Key, Encrypt and Decrypt) that were mapped to
six functions and eight data structures.

4. Trust Infrastructure

The trust infrastructure required to run IE-RCIBS
functions provided by mPBC library can be basically
created in two ways. First, is typical client-server
architecture with mPBC library usage in the mobile device
and in the trusted authority server. While the second
approach is cloud based, i.e., it requires usage of the
mPBC library only on trusted authorities servers. The main
drawback of the first approach is the necessity to integrate
an mPBC library with a native code on every mobile
operating system. This might very time consuming
approach, when using C language based library, because
not all programing languages used in the mobile operating
systems allow easy C-language integration and the library
must be optimized for specific devices. Also, more
computing power is required from mobile devices.

The main drawback of the second approach is the
necessity to create another trusted auxiliary servers for
pairing calculation with the same security level as trusted
authority server that manages user certificates. This also
requires online Internet connection with trusted authority
servers during verification in IE-RCIBS scheme. Therefore,
it is necessary to create trusted channels between a mobile
device and additional servers.

4.1 Client-server architecture

Client-server version of the architecture (Fig.2.) consists
of:

 a server managed by Trust Authority (TA), which
runs application (sTA) providing four web services
(GetPublicParams, GenerateCertificate,
RevokeCertificate, GetCetificateStatus);

 any number of mobile devices with whichever
operating system.

The sTA server application is implemented for operating
system os1 on server S and uses mPBC library in a version
for os1. It possible to link it with PKI that can authenticate
issued public parameters.

The native sP application provides crypto functionality
related to documents signing and verification. The
application is implemented for the specific mobile operating
system and uses mPBC library in the version for this
system. For example, on the Fig.2, we can see among

others mobile device M1 with operating system os2,
containing matched version of the library and software:
mPBC.os2 and sP.os2. Besides providing of the crypto
functionality, sP is responsible for communication with sTA.
Each mobile device contains also three native applications
that provide user interfaces:

 CC – certificate client, manages data of certificate’
key owner;

 SC – signing client, enables documents signing;
 VC – verification client, enables documents

verification;

Fig.2. Client-server version of the architecture

Implementation of sP applications and applications
(interfaces) CC, SC and VC are dedicated for each
operating system. The sP and client applications CC, SC
and VC have access to mobile device local files. Also, they
have access to remote files (for example in cloud drives).
On a mobile device sP does not have to share all of the
functionality - installed and used can be for example only
VC verification application. The user's private files (keys,
parameters) are stored locally by sP on his device. Secure
communication channel between sP and CC, SC and VC
exists (communication inside the device).

Fig.3. A cloud based architecture

4.2 Cloud-based architecture

In a cloud-based version of the architecture, the sP
functionality is transferred out of mobile devices by
providing an auxiliary logical server. This eliminates the
need to port mPBC library for every mobile operating

96 PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 91 NR 2/2015

system, but require to create secure communication
channels between mobile devices and auxiliary sP server at
TA site. There is another disadvantage of this solution -
auxiliary server should be trusted (the mobile devices’ users
trust that server will not execute any unwanted actions, i.e.,
disclosure of private data, incorrect signature calculation or
incorrect verification).

The sTA certification server is implemented for os1
(Fig.3.) (deployed on the server S1) and uses mPBC library
in the version for that operating system. The sP application
server at TA site provides functionality related to a
document signing and verification. It is responsible for
communication with sTA server and operates sequentially
according to the IE-RCIBS scheme.

Fig.4. Web applications in a cloud based environment

A client application can be independent from operating
system (Fig. 4.) and depends only on web browser. Client
applications CC, SC and VC (described in Section 4.1)
have only access to remote files (i.e., in the cloud drives).
The web applications have no or restricted access to local
resources. User's private files (keys, parameters) are stored
locally by sP in the file system. User does not have direct
access to them, uses them indirectly through the services of
sP. Private file from all users are managed by sP.

4.3 Cloud-based demonstration system
We have created cloud based demonstration system to

test the system efficiency and locate potential practical

problems. The communication channel between mobile
devices and TA servers is not secured to simplify system
development. In working system probably technologies, like
some version of SSL/TSL, would be used. The system
consists of:
 the certification server (written in C# language using MS
Visual Studio 2013 for Windows 8), which provides services
described earlier;
 auxiliary server sP (written in C# language using MS
Visual Studio 2013 for Windows 8), which provide
functionality required to, among others, initiate certificates
generation, signature generation and verification,
communication w sTA server; the server uses WebSocket
technology to provide that functionality.
 client applications cClient, sClient and vClient (relating,
respectively to CC, SC, and VC application from the Fig. 4),
which were written in the form of web applications (HTML5
plus JavaScript) and provided using a simple Node.js file
server. They allow certificate management, document
signing and signature verification.

Because client applications are run on mobile devices
using local Internet browsers, they do not have access to a
local file system. The file to be sign or to be verified (the file
plus corresponding signature file) is downloaded from
DropBox account indicated by the user. sP server also uses
DropBox account (not related with users accounts) to
temporary store generated files and then to share their
public address to a specific authorised user.

Dependencies between Dropbox drives used in our
demonstrator system presents the Fig.5 in a form of
a signing scenario. The sample web application user
interface is additionally presented in the Fig.6.

The signing process in the demonstrator is as follows
(Fig.5.):

1. User who wants to sign a file using sClient web
application, retrieve a public link to the file from his
private DropBox account (a process mediated by
the DropBox IERCIBS application).

2. User sends to sP the link to the file.
3. sP downloads the file from the link.

Fig.5. IE-RCIBS cloud-based demonstrator

PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 91 NR 2/2015 97

4. sP signs the file using users’ private key and saves
the signature on its private DropBox account (a
process mediated by the DropBox application
IERCIBS_SERVER).

5. sP sends to sClient a public link to the signature
file.

6. sClient downloads the signature file from the link.
7. sClient stores the signature file in user private

DropBox account.
8. User verifies a file and a signature using vClient

application. vClient sends the public links (of file
and signature) to sP (user receives links to the file
and signature outside the system).

9. sP downloads the file and signature from the links
provided and then can verify them.

Fig.6. User interface of an exemplary web application

5. Conclusions

The analysis of pros and cons of the client-server and
cloud-based architectures showed, that it is faster and
easier to implement pairing application using cloud
approach mainly because of the lower number of
components required to implement, e.g., the mPBC library
must be only prepared for one operating system instead of
many that are using different technologies.

The test conducted using cloud-based demonstrator
showed, that in cases of signing and verification of
documents using auxiliary server instead of mobile device,
the pairing calculation time is marginally short in relation to
the required to retrieve documents from remote location (in
our case from DropBox cloud drive). In case of production
level tests it would be advisable to prepare a dedicated file
server. Also, it is expected that the implementation of
security mechanism that will protect communication channel
between web-based applications and auxiliary sP server,
will slow down communication. Additional problem that can
be identified is creation of a trust model for auxiliary server,
e.g., by being able to audit its operations.

Acknowledgment
This scientific research work is supported by NCBiR of

Poland (grant No PBS1/B3/11/2012) in 2012-2015.

REFERENCES
[1] Galbraith, S. D., Paterson, K. G., Smart, N. P., Pairings for

cryptographer, Discrete Applied Mathematics, 156 (16) (2008),
3113–3121

[2] Pejaś J., Implicit and Explicit Certificates-based Digital
Signature Schemes in Infrastructure with Multiple Trust
Authorities (in polish). Wyd. Stowarzyszenie Przyjaciół
Wydziału Informatyki w Szczecinie. Series: Monographs on
Informatics, Tom II, ISBN 978-83-936799-1-1, Szczecin, 2013

[3] Lynn, B., Pairing-based cryptography library, http://crypto.
stanford.edu/pbc/, (2013), v-0.5.14. C language, LGPL license.

[4] Scott, M., MIRACL library, www.shamus.ie, 2011, V5.5.4.
[5] Aranha, D. F., Gouvêa, C. P. L., RELIC is an Efficient LIbrary

for Cryptography. http://code.google.com/p/relic-toolkit/, (2013),
v-0.3.5. C++ language, LGPL license.

[6] Laboratory of Cryptography and Inform. Security, University of
Tsukuba (Japan) University of Tsukuba elliptic curve and
pairing library, http://www.cipher.risk.tsukuba.ac.jp/tepla/.

[7] Cocks, C., Pinch, R.G.E.: Identity-based cryptosystems based
on the Weil pairing (2001) (un-published manuscript)

[8] Oliveira, L. B., et al., TinyPBC: Pairings for Authenticated
Identity-Based Non-Interactive Key Distribution in Sensor
Networks, Computer Communications, (2010)

[9] Oliveira, L. B., Scott, M., Lopez, J., Dahab, R., TinyPBC:
Pairings for Authenticated Identity-Based Non-Interactive Key
Distribution in Sensor Networks, 5th International Conference
on Networked Sensing Systems (INSS'08), IEEE, (2008),
Kanazawa/Japan, 173-179

[10] Bosma, W., Cannon, J., Playoust, C., The Magma algebra
system. I. The user language. J. Symbolic Comput., 24(3-
4):235–265, 1997, Computational algebra and number theory

[11] Belabas, K., Cohen, H., PARI/GP Library, http://pari.math.u-
bordeaux.fr, 2013, v-2.5.5. C language, GPL license

[12] Akinyele, J.A., et al., Charm: a framework for rapidly
prototyping cryptosystems, Journal of Cryptographic
Engineering, (2013), Volume 3, Issue 2, 111-128

[13] Charm, A tool for rapid cryptographic prototyping, http://charm-
crypto.com

[14] Chuengsatiansup, C., et al. PandA: Pairings and Arithmetic,
LNCS 8365, (2014), 229-250

[15] Peng, Z., Fang, J.J, Comparing and implementation of public
key cryptography algorithms on smart card, (2010), DOI:
10.1109/ICCASM.2010.5622377

[16] Hyla, T., Pejaś, J., El Fray, I., Maćków, W., Chocianowicz, W.,
Szulga, M., Sensitive Information Protection on Mobile Devices
Using General Access Structures, ICONS 2014, IARIA, pp.
192-196 (2014)

[17] Hyla, T., Pejaś, J.: Certificate-Based Encryption Scheme with
General Access Structure. In A. Cortesi et al. (Eds.): CISIM
2012, LNCS 7564, pp. 41–55. Springer-Verlag (2012)

[18] Hyla, T., Pejaś, J.: A practical certificate and identity based
encryption scheme and related security architecture. In: Saeed,
K., Chaki, N., Cortesi, A., Wierzchon, S. (eds.), CISIM 2013.
LNCS, Vol. 8104, pp. 178-193, Springer-Verlag, (2013)

[19] Hyla, T., Maćków, W., Pejaś, J.: Implicit and Expicit
Certificates-Based Encryption Scheme. In: Saeed, K., Snasel,
V.,(eds.), CISIM 2014. LNCS, Vol. 8838, pp. 651-66, Springer-
Verlag, (2014)

Authors: Tomasz Hyla, PhD, E-mail: thyla@zut.edu.pl; Imed El
Fray, PhD, E-mail: ielfray@zut.edu.pl; Witold Maćków, PhD, E-
mail: wmackow@zut.edu.pl; Jerzy Pejaś, PhD, E-mail:
jpejas@zut.edu.pl; West Pomeranian University of Technology in
Szczecin, Faculty of Computer Science and Information
Technology, ul. Żołnierska 52, 71-210 Szczecin, Poland.

