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Abstract. In this work the problem of algorithmic composition of music has been presented. Author has attempted to locate presented solution 
between other related approaches within the musical algorithm positioning framework proposed by Woller et al. The main idea of the system is that 
the music composition process is performed by number of mini-models parameterized by further described properties. The mini-models generate 
fragments of musical patterns used in output composition. Musical pattern and output generation are controlled by container for the mini-models – a 
host-model. Overall mechanism has been presented including the example synthesized output compositions. 
 
Streszczenie. W pracy przedstawiony został problem algorytmicznego komponowania muzyki. Autor dokonał próby ulokowania prezentowanego 
systemu komponowania pomiędzy innymi istniejącymi rozwiązaniami w tej dziedzinie z wykorzystaniem algorytmu pozycjonowania systemów 
algorytmicznego komponowania muzyki, zaproponowanego przez Woollera i innych. Główną ideą autorskiego systemu jest przeprowadzenie 
procesu komponowania muzyki z wykorzystaniem mini-modeli, sparametryzowanych przez zdefiniowane i opisane w pracy parametry. Mini-modele 
generują fragmenty wzorców muzycznych, wykorzystanych następnie w wyjściowej kompozycji. Generowanie wzorców muzycznych oraz 
kompozycji wyjściowej jest sterowane przez kontener zawierający mini-modele. W pracy został przedstawiony ogólny mechanizm powstawania 
kompozycji z załączonymi syntezowanymi przykładami kompozycji wyjściowych. (Transformacyjno-generatywny system algorytmicznego 
komponowania muzyki tła) 
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Introduction 

In the literature the term “generative music” is a subset 
for the wider set of the “generative art” and it refers to music 
that has been created with the use of an autonomous 
system. The meaning of autonomous system in this context 
is connected with non-human system which can 
independently create art (music) with the use of algorithm 
that determines a manner of generation.  

In [1] Boden and Edmonds noted that “the terms of 
‘generative art’ and ‘computer art’ have been used in 
tandem, and more or less interchangeably, since the very 
earliest days”. In the domain connected with this paper, the 
first time the computer systems were used to generate 
music was probably the “Illiac Suite for String Quartet” 
created by Hiller and Isaacson in 1967 [2]. Another early 
approach to the algorithmic computer music was a system 
called  “Stochastic Music Program” by Xenakis that was 
completed in 1962. Details about this application were 
published in a form of essays on “Formalized Music” in the 
same year [3] and source code for this program was 
published in [4]. 

Lately, the term “generative music” has been created by 
Eno who was promoting and using generative art methods 
in his work [5]. In 2003 Galanter extended the term 
“generative art” by giving definition: “Generative art refers to 
any art practice where the artist creates a process, such as 
a set of natural language rules, a computer program, a 
machine, or other procedural invention, which is then set 
into motion with some degree of autonomy contributing to or 
resulting in a completed work of art”[6]. 

This work focuses on the generative algorithmic music 
composition system that generates various kinds of 
background music with the use of parameterized mini-
models, which define possible musical fragments used in 
output composition. These mini-models constitute a host-
model, in which author defines various transformational 
rules to generate music. The details about author’s model 
have been preceded by the presentation of the related work 
located within the framework for positioning musical 
algorithms.  
 

Background 
Author of this work has focused on the aspect of 

generating a background music. It refers to “music of any 
kind that is played while some other activity is going on, so 
that people do not actively attend to it” [7]. Background 
music plays a second role in the lives activities, but it can 
have an influence on many aspects of our behaviour. In [8] 
Kämpfe et al. analyzed the impact of music on various tasks 
in human live. The authors suggested that “global analysis 
shows a null effect, but detailed examination of the studies 
that allow the calculation of effects sizes reveals that null 
effect is most probably due to averaging out specific 
effects”. In this work several cases in which the background 
music has negative or positive impact on the activity 
process have been identified. Cockerton et al. in [9] 
examined the positive and negative effects of background 
music on cognitive test performance. Finally, Chaudhury et 
al. in [10] presented the role of the music in reprogramming 
brain activity. Authors reasoned that “music can trigger 
mechanisms of brain functions including learning and 
memory”. 

These analyses are the basis for the attempt to create a 
system that could generate background music in a semi-
automatic manner. Such a system could be a tool that 
allows to make a different kind of background music, 
according to the given activity. According to the work of 
Man-Kwan and Shih-Chuan [11] “current research on 
computer composition may be classified under two 
approaches based upon the method used to generate the 
compositional rules”. In the first approach the explicit rules 
are being used, which are specified by humans. Second 
approach uses the implicit rules that are derived from a 
sample piece of music. 
 
Comparison framework for algorithmic music system 
by Wooller 

The process of music composition in this kind of 
approach is controlled by the algorithm that generally 
produces music in the analytic, transformational or 
generative manner. Wooller et al. in [12] presented a 
framework that allows authors of various algorithmic music 
systems to locate their solutions between other approaches. 
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In Figure 1 some current applications and author’s 
system within the algorithmic music framework have been 
presented. The algorithmic music systems are located on a 
plane described by two functions. The first function ranges 
from analytic, through transformational, to generative 
character of the algorithm. The second function ranges from 
narrow to broad musical context used in a process of music 
generation. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.2. Some related works and author’s system located within the 
algorithmic music framework presented in [12] 

 

Wooller et al. clearly reviewed the meanings of the given 
functions ranges. Analytic musical algorithms according to 
[12] “tend to reduce the potential data size and the general 
music predisposition of the representation by extracting 
specific features”. The example of this kind of algorithms 
can be described as a process that takes a set of musical 
sequences and outputs a set of notes. Transformational 
musical algorithms can only alter the information (they tend 
to not have a significant impact on the general musical 
predisposition of the data representations). The example of 
a transformational musical algorithm can be a process that 
transposes the individual notes or retrogrades the order of a 
phrase. Generative musical algorithms can be described as 
a process that outputs more complex sequence based on 
the reduced input data. For example, a process that takes a 
number as a seed and returns a sequence of notes is 
generative. 

The second function describes the context for musical 
algorithms used in the given approach. Wooller et al. in [12] 
defined context as “the surrounding information that 
influences the computation of an algorithm and therefore an 
algorithmic music system”. The context width in the musical 
manner can be presented as a note located on a musical 
score with a circle drawn around the note. The scope of the 
context is related to the circle surrounding the note. The 
more radius the circle has, the wider the context is (more 
notes are included inside the circle). Authors of [12] claimed 
that the width of the context depends not only on notes 
occurrences but also it can be influenced by more 
dimensions of a note (more parameters). This means that 
an algorithm that takes into account four parameters of a 
note (for example: onset, pitch, velocity and duration) has a 
broader context than a similar algorithm that considers only 
pitch parameter. 

Taking the above definitions into consideration, author 
has placed his approach within the positioning algorithmic 
music framework as it has been presented in Figure 1. 
Before presenting the explanation of this placement, the 
next section contains the analyses of the related 
approaches that have been located by Wooller et al. within 
the framework. 

 

Related work 
The early solution of algorithmic music composition with 

the use of computer was the MUSICOMP software by Hiller 
and Isaacson presented in [2]. In the experiments authors 
explored different aspects of the music composition process 
in the algorithmic manner. In general, these experiments 
were based on modifications of “random white-noise music” 
using rules from counterpoint harmony and some of the 
processing music structure was transformed by adding 
chords or rules that limited the number of possible 
successive repetitions of a phrase. In the additional 
experiments of the MUSICOMP project the Markov process 
was used to control a consonance and dissonance 
instances by affecting the influence of various probability 
distributions. The use of tonality system in these models 
increased the contextual width by marking notes for tonal 
reference and relating the following notes to it. Overall 
experiments described by Hiller and Isaacson were 
positioned by Wooller et al. in [12] as a generative system 
that uses a broad musical context during the music 
generation process (Figure 1). 

Other computer model was developed by David Cope 
and presented in [13] and [14]. The EMI project 
(Experiments in Musical Intelligence) focused on the use of 
recombination and grammars in the creative musical 
process. EMI was supplied by a manually incorporated 
musical structure, while phrase and measure level 
organization is generated with the use of ATNs – 
Augmented Transition Networks, and note organization by 
MATNs – Micro-Augmented Transition Networks [12]. The 
complex systems of grammar were used inside EMI. The 
rules complexity and the use of many dimensions of the 
algorithms input, denoting a wide musical context and the 
specific combinatorial constraints were determined through 
the analysis of the database of music. That is the reason 
EMI system has a wide range in the function of describing 
musical composition algorithm (see Figure 1). 

Next solution presented by Mozer in [15] reviewed the 
experiments of note-by-note prediction. Mozer studied if a 
model, without explicit representations of a form, could 
learn structural trends that can be used to generate 
complex music compositions. In his Concert he used a 
third-order Markov chain to create an output composition. 
The system was initially trained to predict the next note in a 
sequence. The training process was based on the recursive 
feedback – the first notes of a sequences are given, then 
predictions are transferred to the input, and thus an entire 
output is predicted. The Concert was located by Wooller et 
al. in [12], in the ranges of functions presented in Figure 1. 

IBM provided (in 1999) and abandoned a next 
algorithmic music system called Music Sketcher. Abrams et 
al. (the members of IBM Music Sketcher project) in [16-17] 
reviewed the structure of Music Sketcher and subsystems 
that provide different functionality in the music generation 
process. Music Sketcher was a meta-sequencer which 
generates music with the use of small pre-composed pieces 
of data called riffs. Users could transform a musical 
parameters (pitch, duration or velocity) via graphs 
controlling primitive arithmetic operations. Overall 
composition process was based on transformational 
procedures: musical riffs (patterns) can be rearranged by 
number of functions without affecting music predisposition 
of the data representation and size. According to Wooller et 
al. [12] the Music Sketcher is located within the framework 
inside the transformational algorithm class with the narrow 
context. 

In 2001 Microsoft presented its tool for composing non-
linear music called DirectMusic Producer (DMP) which was 
reviewed by Buttram in [18] as a tool for interactive music 
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composition for dynamic context like computer games. In 
DMP a basic musical structure is “segment” that defines a 
section of music that renders differently on each playback 
depending on user defined settings. The segment is a 
container for a different kinds of “tracks”. The track can hold 
linear sequence (“Sequence Track”) or bundle of user 
defined variations (“Pattern Track”), which are flipped 
between by the playback engine. In DMP the musical 
algorithm has a fairly wide context, because of the system 
of grammars that allows for high level relatedness between 
data and the algorithms that use it. Despite the fact that in 
DMP there is no analysis (random chord traversal and 
variation selection) and the algorithm uses recombination of 
patterns, the system can be classified as generative with a 
small functionality in the transformational range of Woller et 
al. [12] framework function (Figure 1). 

Pachet in [19-20] presented  The Continuator - a system 
for music improvisation which learns a Markov model of 
possible note sequences from a database of music. Major 
feature of the system is the use of a real-time “fitness 
function” to influence probabilities of the notes. Pachet 
proposed an algorithm which generates polyphonic music 
with the use of clustering notes within the same temporal 
region. The clustering rules base on explicit and implicit 
rules. For example, explicit rules of clustering define fixed 
metrical structure of the sequence, while implicit rules use a 
parameter to determine the processing of the sequences 
(for example cut-off point between overlapping notes and 
chords). According to Woller et al. [12] positioning 
framework, The Continuator is placed as an algorithm that 
uses analytic, transformational and generative techniques in 
music composition and has a fairly wide context due to 
musical input and a large number of instructional 
parameters. 

Other described system is a solution proposed by Biles 
in [21-22]. He reviewed the system called GenJam which 
generates jazz improvisations and provide harmony to a 
human player. The GenJam database of music containing 
structural and motific data for the entire standard jazz 
compositions provides the algorithm with a predetermined 
global structure around which to operate. The major 
mechanism is based on Interactive Genetic Algorithm (IGA), 
in which local musical structure is derived from 
recombination and selection. The pitches are mapped to a 
chord progression and scale. The user defines the fitness of 
the lick combinations. GenJam can randomly combine 
phrases or use a function to ascertain the most rhythmically 
appropriate crossover point. Biles used a number of other 
heuristics to ensure a certain musicality of the output. With 
finite licks and potentially infinite musical output, the system 
can be classified as generative [22]. Woller et al. located 
the GenJam within the positioning framework as major 
transformational system with the use of broad musical 
context (input database of music). 

The last described solution is a generative approach 
proposed by Zabierowski and Napieralski in [23]. The 
authors described the possibilities of generating music by 
implemented neural networks methods. In this approach the 
music creation process focuses on the harmonic sequence 
generation with the use of tonal harmony rules.      

In the next section author has proposed a model of the 
transformational-generative system of algorithmic music 
composition with the use of musical patterns generation 
techniques. The example of the generated output of model 
has been presented with the use of a piano roll plot and 
digital audio files on the author’s webpage. 

 

Transformational-generative system for background 
music generation 

The overall structure of the proposed system has been 
presented in Figure 2 in the form of a Component UML 
Diagram. 

The basic component for the system is a mini-model, 
that can belong to one of the following class: monophonic 
model, chord model or drum model. A mini-model can be 
described as: 
 

(1)  },,,,{ ccCMMOPVNMCMm   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.2. The overall structure of the transformational-generative 
system 
 

The C is a Class of the given Mm and it defines the 
manner in which the Mm is used by a host-model. NM is an 
acronym of Note Matrix that has been proposed by 
Toiviainen and Eerola within the MIDI Toolbox framework 
and described in [24-25]. Table 1 shows an example of NM 
describing an octave C4-C5 according to the MIDI standard. 
The values in the first two columns of the matrix define the 
onset and the duration of the subsequent sounds (lines). In 
the 'MIDI channel' column there is a MIDI channel number 
to which the sound has been assigned. The 'Pitch' column 
includes sound pitches in the range 0-127 according to the 
MIDI standard. In the 'Velocity' column the velocity of sound 
(volume) has been defined, while the remaining sixth and 
seventh columns contain the onset and the duration of the 
sounds in seconds. In author model all durations of notes 
within NM have a constant fixed value defined by user. 

 

Table 1. The example of NM describing an octave C4-C5 with 
constant duration values equal to 0.25 second 
Onset Dur. MIDI Pitch Vel. Onset Dur. 
0.00 0.42 1 60 100 0.00 0.25 
0.42 0.42 1 62 100 0.25 0.25 
0.83 0.42 1 64 100 0.50 0.25 
1.25 0.42 1 65 100 0.75 0.25 
1.67 0.42 1 67 100 1.00 0.25 
2.08 0.42 1 69 100 1.25 0.25 
2.50 0.42 1 71 100 1.50 0.25 
2.92 0.42 1 72 100 1.75 0.25 

 
OPV is an Onset Positions Vector that describes in 

which rows within NM the notes can be generated. OPV is 
generated with the use of the number of rows defined in NM 
as “l” and “rs” value that defines interonset interval (IOI) 
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refers to the amount of time between the start of one note 
and the start of the next note: 
 

(2)  lrsnlrsnOPV  ,};::{  
  

The CMM is a Combination Motifs Matrix (CMM), that 
defines possible combinations of pitch sequence defined by 
user. The CMM consists of k-element combinations C of the 
n-element pitch sequence arranged in rows in matrix with 
the size of “m” rows (number of the combinations) by “k” 
column (length of the defined pitch sequence). The CMM 
can be defined as: 
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From CMM a single row referring to PM (Pitch Motif) is 
selected for a given mini-model that generates a pattern 
with the use of defined generation rule. The special kind of 
PM is a single constant value referring to mini models that 
generate sequences consisting of notes with one equal 
pitch value. This kind of mini models is being used to 
generate sequences for single drum instrument related to 
MIDI pitch value [26]. 

The “cc” is a coverage coefficient that defines on which 
position in OPV the notes defined in PM are generated. The 
cc is defined as: 
 

(4)  lms
ms

l
cc  ,  

  

The “ms” (model step) refers to value that defines how 
many notes in NM should be generated according to 
positions given in OPV. The greater “ms” value is, the 
smaller the IOIs are. 

It is possible that a number of the mini-models uses the 
same PM, OPV and cc values. This situation is presented in 
the “Results” section. 

 

Pattern generation 
The number of the mini models is defined arbitrarily. A 

mini model can generate a simple drum sequence with the 
use of only one instrument, a drum sequence consisting of 
a group of instruments, a monophonic melody or chord 
progression. The behavior of a mini model is controlled by 
the host-model that is a container for the mini models 
participating in the musical pattern generation process. In 
Table 2 relationship between mini-model class and pattern 
generation rule has been presented. 

 

Table 2. Relationship between mini-model class and pattern 
generation rule 

Rule Mini-model class PM 
R1 Monophonic model vector 
R2 Monophonic model single pitch value 
R3 Chord model vector 
R4 Chord model single pitch value 
R5 Drum model vector 
R6 Drum model single pitch value 

 
The host-model uses a given pattern generation rule for 

a given mini-model class. In Table 3 pattern generation 
rules and their descriptions referring to pattern generation 
behavior have been presented. These rules are used in 
example experiments in the “Results” section. Rules R4 and 
R5 have been defined only for major or minor basic chords 
generation and are assigned with the key-finding 
Krumhansl-Kessler algorithm which analyzes selected row 

from CMM [27-28]. This is a weak constraint for pattern 
generation process, but it could be extended by automatic 
feedback analysis of pattern key for monophonic model and 
chord model and adding ornamentations for generated 
chords. 

After the pattern generation rule has been used, host-
model selects transformational rule, that is used with the 
generated pattern, according to TRPT (Transformational 
Rules Probability Table). TRPT can be described as an 
extended version of  probability tables used in musical 
context by Miranda in [29] on page 68. Besides selection 
probabilities defined for every transformational rule, author 
assigned transformational rule to given mini-model classes. 
The exemplary TRPT used in the presented research has 
been shown in Table 4. 

 

Table 3. Defined pattern generation rules and their behaviour 
Rule Description of the behaviour 
R1 First, fill every cc position in OPV with a given pitch vector. If 

there are more OPV positions than elements in pitch vector, 
then continue filling from the beginning of the pitch vector. 

Finally, assign generated pattern to the given MIDI channel. 
R2 First, fill every cc position in OPV with a given pitch value. 

Then assign generated pattern to the given MIDI channel. 
R3 First, create two copies of a given pitch vector. Next, 

transpose first copy by 4 or 5 (according to key) pitch up and 
second copy by 7 pitch up. Then, concatenate the given 

pitch vector with the copies and fill every cc position in OPV 
with a created concatenation. If there are more OPV 

positions than elements in the created concatenation, then 
continue filling from the beginning of concatenation. Finally, 

assign generated pattern to the given MIDI channel. 
R4 First, create two copies of a given pitch value. Next, 

transpose first copy by 4 or 5 (according to key) pitch up and 
second copy by 7 pitch up. Then, concatenate the given 

pitch value with the copies and fill every cc position in OPV 
with a created concatenation. If there are more OPV 

positions than elements in the created concatenation, then 
continue filling from the beginning of concatenation. Finally, 

assign generated pattern to the given MIDI channel. 
R5 First, fill every cc position in OPV with a given pitch vector. If 

there are more OPV positions than elements in pitch vector, 
then continue filling from the beginning of pitch vector. Then, 

assign generated pattern to MIDI channel 10. 
R6 First, fill every cc position in OPV with a given pitch value. 

Then, assign generated pattern to MIDI channel 10. 
 
Table 4. Defined exemplary transformational rules within TRPT 

Rule Description Defined 
probability 

Mini-model 
class 

TR1 Transpose 4 
pitch up 

P1=0,125 Chord, 
monophonic 

TR2 Transpose 7 
pitch up 

P2=0,125 Chord, 
monophonic 

TR3 Transpose 
octave up 

P3=0,125 Chord, 
monophonic 

TR4 Transpose 
octave down 

P4=0,125 Chord, 
monophonic 

TR5 TR3, than TR1 P5=0,125 Chord, 
monophonic 

TR6 TR3, than TR2 P6=0,125 Chord, 
monophonic 

TR7 TR4, than TR1 P7=0,125 Chord, 
monophonic 

TR8 TR4, than TR2 P8=0,125 Chord, 
monophonic 

 

In the presented system generation of the pattern is 
connected with the pattern classes defined in the system 
(Figure 2). Pattern class describes from which mini-models 
a pattern should be generated. It is possible that pattern 
class consists of the patterns generated by the only one 
mini-model.  
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Pattern generation process is constrained by defined 
length of the used NM, duration value used in NM and 
number of the patterns to generate. These values are 
defined arbitrary. It should be noted that a small collection 
of the generated patterns results frequent repetitions within 
the output composition. 

 

Output generation 
Output generation process (Figure 2) is connected with 

the selection of previously generated patterns by defined 
mini-models. Within selection the Parncutt’s durational 
accent model is used to compute the similarity between 
generated patterns [30].The similarity of generated patterns 
is defined as a Euclidean distance between each pattern in 
12-components vector consisting of the probabilities of 
pitch-classes presented in [30]. Similarities of generated 
patterns are used to generate a Pattern Transition Structure 
(PTS, Figure 2) from which the patterns included in the 
output composition are selected. 

The similarities are sorted for a given pattern from the 
most similar to the least similar pattern. During output 
generation the pattern selection process uses patterns with 
the similarity threshold defined by user. In authors 
experiments 50% from the most similar patterns are used 
during selection. 

Output generation process is limited by the defined 
number of the patterns that should be used in the output 
composition. Selected patterns are repeated in the output 
composition according to the randomly chosen value from 
defined repeats array. This array consists of integer values 
defining how many selected patterns should be looped in 
the output. When the pattern is looped and added to the 
composition, the whole process of output generation is 
repeated until the limited number of the used patterns is 
reached. 

 

Results 
In the current research the model has been 

implemented with the use of MIDI Toolbox for Matlab [25]. 
The author defined following parameters describing an 
algorithmic composition process: 

 NM duration value – 0.25 sec, 
 NM length – 32 rows (in connection with the 

duration 0.25 sec, it lasts for 8 seconds), 
 The number of the patterns to generate – 128, 
 The number of the patterns to be used in the 

output composition – 64, 
 Array of the patterns repetitions – a={2,4} 

(selected pattern is repeated two or four times 
within the output). 

In Table 5 the example parameters for the 20 mini-
models defined in the system has been presented. There 
were 13 drum mini-models, 6 mini-models generating 
monophonic melody and 1 mini-model for chord generation 
purpose. 

The PM vector for 13th mini-model is selected from the 
example CMM defined as: 
 

(5)  
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The mini-models from 14th to 20th use PM vector 
selected for the 13th mini-model. For the pattern 
transformational process the rules defined in Table 4 have 
been used. The pattern classes have been defined as it is 
presented in Table 6. 
 

Table 5. The example of the mini-models parameters for the 
generation process 

Mini-
model 

Class OPV cc PM 

1 Drum  [1:4:29] 2 36 
2 Drum  [2:3:32] 2 36 
3 Drum  [16:4:32] 3 40 
4 Drum  [1:4:29] 5 38 
5 Drum  [1:1:32] 2 42 
6 Drum  [16:4:32] 3 47 
7 Drum  [16:3:31] 3 48 
8 Drum  [1:4:29] 3 54 
9 Drum  [17:4:29] 5 [38,39,40,41]

10 Drum  [17:4:29] 5 [35,36,37,38]
11 Drum  [2:3:32] 2 51 
12 Drum  [17:4:29] 5 57 
13 Monophonic [2:4:30] 2 from CMM* 
14 Monophonic [2:4:30] 5 same as * 
15 Drum [1:5:31] 2 same as * 
16 Monophonic [2:2:32] 3 same as * 
17 Monophonic [3:3:30] 2 same as * 
18 Monophonic [1:1:32] 2 same as * 
19 Monophonic [2:3:32] 3 same as * 
20 Chord [1:4:29] 2 same as * 

 

Table 6. Defined exemplary pattern class generated by mini-
models. 

Pattern class Generated by the mini-models 
1 1,2,3,4,5,6,7,8,9,11,13,14,15,16,17,18,19
2 1,2,3,5,6,7,8,10,13,14,15,16,18,19 
3 1,3,5,6,7,8,11,12,13,14,15,17,18,20 
4 1,4,5,8,12,13,14,15,16,18,19,20 
5 1,3,4,5,13,14,15,16,17,18,19,20 
6 1,4,12,13,14,15,16,17,18,19,20 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.3. Overall % use of defined mini-models (a) and pattern class (b) in pattern generation. The piano roll plot for the example generated 
pattern from pattern class 1 
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In Figure 3 the selected overall statistics for the current 
experiments have been presented. The mini-models 9th 
and 10th have the lowest usage in the pattern generation 
process (Figure 3a), while the mini-models 1st, 13th, 14th, 
15th and 18th have the highest usage (about 7,5%). In the 
current experiment pattern class 4 has the lowest usage 
during pattern generation, while the pattern class 5 has 
about 30% of the usage (Figure 3b). In Figure 3c the piano 
roll plot for the example pattern from class 1 has been 
presented, which is the pattern class consisting of the most 
complex patterns (generated by 20 mini-models, Table 6). 

The output composition has been synthesized with the 
use of SynthFont application [31] and soundfont 
instruments bank Evanessenve2 to provide more realism to 
the listening MIDI music. The MIDI file has been converted 
to the MP3 file in order to keep equal quality of music for 
the listeners. The exemplary final composition generated by 
the described model is available on [32]. 
 
Conclusion 

The presented system generates compositions that 
contain repetitions of the generated patterns. Output 
compositions fluctuate around base motif with the number 
of variations. Generative feature of the system could be 
proved by generating small pieces of music by mini-models 
and using them to generate more complex music. 
Transformational behavior of the system is connected with 
the use of probability table for the transformational 
procedures processing generated patterns. 

Author has attempted to locate the system within the 
Woller et al. framework for musical algorithm positioning. 
The narrow musical context used in the current approach 
could be extended by defining CMMs and OPVs structures 
based on the analysis of the reference compositions and 
extracting characteristic motif from the given melody. 
Because of limited place for this work, author has only 
focused on a few aspects of current research. It should be 
mentioned, that instruments used in the synthesized version 
of output compositions have been selected arbitrary by 
author. 

 Further research is focused on extending current 
limitations of the model (i.e. constant durations value and 
simple chords generation) to use characteristics from the 
reference compositions that allow to define CMM, OPV and 
other mini-model parameters in automatic or semiautomatic 
manner. Number of generated outputs are available at 
ResearchGate as datasets called “Music composition 
generated by transformational-generative system…” [33]. 
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