
22 PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 91 NR 2/2015

Agnieszka KAMIŃSKA, Włodzimierz BIELECKI

West Pomeranian University of Technology, Szczecin

doi:10.15199/48.2015.02.06

Statistical models for the estimation of execution time of coarse-
grained OpenMP programs

Abstract. This paper presents a family of statistical models for the estimation of program execution time. The paper discusses the possibilities of
how to apply the family to reduce iterative compilation duration and in consequence, software development duration. The discussion is supported
with the results of experimental research carried out for program loops selected from the NAS Parallel Benchmarks test suite.

Streszczenie. W artykule przedstawiono autorską koncepcję rodziny modeli statystycznych do oszacowania czasu wykonania programu oraz
omówiono możliwości wykorzystania jej w celu skrócenia czasu wykonywania kompilacji iteracyjnej (a w konsekwencji czasu wytwarzania
oprogramowania). Przedstawiono także wyniki przeprowadzonych badań eksperymentalnych. (Modele statystyczne do oszacowania czasu
wykonania aplikacji gruboziarnistych w standardzie OpenMP).

Keywords: program execution time, iterative compilation, statistical models.
Słowa kluczowe: czas wykonania programu, kompilacja iteracyjna, modele statystyczne.

Problem statement

Limitations resulting from laws of physics impose a
barrier on further miniaturization and increase of the speed
of uniprocessors. On the other hand, data processing
duration is crucial in many practical applications of
computers. For these reasons, the use of multiprocessor
computers allowing for parallel computing has become an
alternative for reducing data processing time by increasing
the speed of uniprocessors.

Parallel applications can be created either manually (i.e.
by a developer) or automatically (i.e. by dedicated
parallelizing compilers). Since the manual creation of
parallel applications is very time consuming and more error
prone than it is desired, the automatic creation of parallel
applications is a more popular approach, especially in case
of commercial software development. The idea of this
approach is to transform, at the compilation stage, a
sequential program into a semantically equivalent parallel
program. If the semantics of a given sequential program is
such that the program can be parallelized, there is always
more than one way of carrying out the parallelization and
the main difference between the particular ways is the
execution time of the resultant executables in the target
environment. This means that the parallelizing
transformations selected at the compilation stage influence
the execution time of the parallelized program. Within the
compilation known as optimizing, one tries to select such
transformations that allow us to achieve the shortest
execution time of the resultant executable in the target
hardware environment

In view of great complexity of the organization and
architecture of modern computers, methods used in
optimizing compilation do not make it possible to
undoubtedly indicate which of possible versions of the
source code of a given program will have the shortest
execution time in a given target environment. Using these
methods, it is possible to find approximate solutions;
whereas iterative compilation is still the only way of finding
the exact solution. Within iterative compilation, all
considered and semantically equivalent source codes of a
given program are executed in the target hardware
environment; their execution times are compared and the
source code with the shortest execution time is selected for
final use. Iterative compilation can be very time consuming
and thus, costly in practical applications, especially in case
of commercial software development. Therefore, a potential
improvement in iterative compilation is to use a

mathematical model in order to select from possible source
code variants of a given program the ones with shortest
expected execution times and then, limit the empirical
selection of the best source code to the so reduced set. In
such a way, the time of software development can be
reduced – since, by using estimations, one can quickly
focus iterative compilation on empirical verification
(execution in the target environment) of solely the most
promising source code variants.

Potential practical advantages related to the proposed
improvement in iterative compilation and the scientific gap
found in this area have become an inspiration for the
authors’ solution presented in this paper and involving the
elaboration of the family of iterative compilation oriented
statistical models for the estimation of program execution
time.

Since most of time consuming operations – calculations
made within computer programs – are executed in loops,
the scope of applicability of the elaborated family of
statistical models has been limited to a class of parallelized
loops, which is often used in practice: coarse grained loops,
parallelized in the OpenMP C/C++ standard. Coarse
grained granulation [1] takes place when the duration of
execution of data processing related operations in the
program is longer than the total duration of initializing these
operations and transfer of the data needed for the execution
of these operations. This type of granulation corresponds
with the nested loop structure in which the outermost loop
of the nest is parallelized.

Coarse grained granulation is typically used in
parallelization of programs executed by currently very
popular multiprocessor machines with shared memory [2].

Family of statistical models for the estimation of
program execution time

A family of statistical models for the estimation of
program execution time is based on authors’ general model,
i.e. the general equation of a function which makes it
possible to estimate the execution time of coarse grained
program loops parallelized in the OpenMP C/C++ standard.

Program execution time has been assumed as the
dependent variable of a general model. One has assumed
that quantitative variables reflecting factors which
significantly influence program execution time should be the
independent variables of the general model. Apart from the
dependent and independent variables, the general model
comprises parameters whose values are unknown a priori.

PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 91 NR 2/2015 23

It has been decided that the values of these parameters
should be determined for a specific hardware environment,
based on the regression analysis carried out for empirical
data collected in this environment. In order to collect the
required empirical data, we have used programs prepared
specially for this purpose. These programs are hereafter
referred to as pattern program loops. Each pattern program
loop represents a combination of some arbitrarily assumed
characteristics related to data reuse and interference.
Interference takes place when a cache line containing data
which can be reused in the program is overwritten with new
data, despite the fact that there is sufficient unoccupied
space in the cache where the new data could well be
fetched – however, because of the cache organization, a
specific and already occupied cache line has to be
overwritten instead [3, 4, 5, 6].

In order to elaborate a family of statistical models, we
have used two exemplary pattern program loops: nonInterf
(representing data reuse with no interference) and matmul
(representing data reuse with interference).

The source codes of the both pattern program loops are
presented in Table 1.

Table 1. Pattern program loops
Pattern program loop 1:

Data reuse with no interference
Pattern program loop 2:

Data reuse with interference
Loop nonInterf

int ma[N][N],mb[N][N],mc[N][N],
md[N][N],me[N][N];
int i, j, N;

for (i = 0; i <= N-1; i++) {
 for (j = 0; j <= N-1; j++) {
 ma[i][j] = 1;
 mb[i][j] = mc[i][j] +

md[i][j]*me[i][j];
 } //endfor j
} //endfor i

Loop matmul

int ma[N][N],mb[N][N],mc[N][N];
int i, j, k, r, N;

for (i = 0; i <= N-1; i++) {
 for (k = 0; k <= N-1; k++) {
 r = ma[i][k];
 for (j = 0; j <= N-1; j++){
 mc[i][j] = mc[i][j] +

r*mb[k][j];
 } //endfor j
 } //endfor k
} //endfor i

After substituting the parameters of the general model
with values, the general model becomes a specific one. The
specific model specifies the general model for a particular
situation, by assigning relevant values to the parameters of
the general model.

Each specific model is derived from the general model
for a particular pattern program loop. The specific model
can be applied both to its pattern program loop and to other
programs with the same data reuse type as the pattern
program loop. The other programs in question are hereafter
referred to as non pattern program loops.

In order to avoid the extrapolation of the specific model
beyond the data range for which the model is constructed,
we have elaborated assumptions regarding the scope of
applicability of the specific model to non pattern program
loops.

Form of the general model
The execution time of every program results from the

interaction of many various factors. The following factors
influence program execution time:

a) the structure of the parallel program and the type of
parallelism exposed by the program,

b) the specificity of the problem solved in parallel,
c) parameters of the hardware environment in which the

parallelized program is to be executed.
In the model, particular factors are represented by

quantitative variables, in the following way:
a) The structure of the parallel program and the type of

parallelism exposed by the program
In the OpenMP C/C++ standard, programs are

parallelized by multithreading. The time of the execution of
the parallelized program depends on the number of invoked
OpenMP threads – therefore, the number of OpenMP
threads executing the program has been adopted as an
independent variable (X4) of the general model.

The duration of execution of the entire task (program
loop) is determined by the execution time of the thread
which has been assigned to execute the greatest number of
iterations, and in particular by the size of the largest chunk
of iterations assigned to this thread. Therefore, we have
adopted as an independent variable (X3) of the general
model the maximum number of iterations in a single chunk
of iterations assigned to be executed by an OpenMP thread
for a given assignment of iterations to OpenMP threads.

b) The specificity of the problem solved in parallel
From the low level perspective, the specificity and

variety of problems solved in computer programs are
reflected in the number and type of arithmetic operations to
be executed by a processor. A simple yet effective way of
expressing this observation quantitatively is to assign
different weights to different types of arithmetic operations.
The weights should be selected based on the analysis of
the execution times of instructions of a given processor.
Therefore, the total weighted number of arithmetic
operations per single program thread has been adopted as
an independent variable (X2) of the general model.

c) Cache and its organization
The program execution time depends on:
1. the actual data storage capacity of the processor cache
memory in a given computer system and its replacement
policy (associativity),
2. the minimum data storage capacity of direct-mapped
cache, which is necessary in order to contain all the data
processed in the program, assuming the full reuse of the
data stored in the cache memory; the minimum data
storage capacity in question can be estimated by means of
data footprint (according to the methods presented in [7]
and [8]); in order to calculate the data footprint for a given
program, it is sufficient to know its source code; there is no
need to execute this program.
3. the relation between 1. and 2.

In connection with the above, the relation between 1.
and 2. has been adopted as an independent variable (X1)
of the general model.

With such a list of independent variables of the model to
be formulated and assuming that the dependent variable is
Yt representing estimated CPU time for the execution of the
program loop by all program threads, expressed by the
number of CPU clock cycles, we have carried out a
regression analysis. Empirical data for the regression
analysis have been collected for two pattern program loops
(nonInterf and matmul) prepared specially for that purpose.

According to the assumptions of the linear regression,
the dependency between the observed values of dependent
variable Y and corresponding values of independent
variables X1, X2, …, Xp is expressed by the following
expression (1):

(1) iiiipiii YtXpaXaXaaY ...21 210

where: i – i = 1, 2, …, n are identifiers of observations, a0,
…, ap – parameters of unknown exact values; the values of
these parameters are estimated by means of the classical
method of least squares, X1i, …, Xpi – known values of
independent variables X1, X2, …, Xp, corresponding to the
value of variable Y observed in the ith observation, Yi –
value of dependent variable Y observed in the ith
observation, Yti – theoretical (estimated) value of dependent
variable Y for the ith observation, εi – statistical error
(disturbance, noise) for the ith observation.

24 PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 91 NR 2/2015

Equation (1) can be applied when the dependency
between empirical values of the dependent variable and
independent variables is linear. Equation (1) can be also
applied when the dependency between the variables is a
nonlinear dependency represented with a nonlinear function
however, after applying relevant mathematical operations
(e.g. logarithms), the nonlinear function can be transformed
to a linear equivalent. This kind of transformation can be
carried out for the following types of nonlinear functions:
power, exponential, logarithmic or hyperbolic.

Therefore, for independent variables: X1, X2, X3, X4
and dependent variable Yt the general model (which is a
linear regression model derived by means of the classical
method of least squares) could take one of the following
forms: a linear form, a power form, an exponential form, a
logarithmic form or a hyperbolic form.

Taking into account the nature of variables X1, X2, X3,
X4, Yt and their mutual relations, one could assume that the
dependency between all these variables can be described
with a power expression.

This assumption has been verified by the examination of
the value of coefficient of determination (R2) calculated for:

- variable Yt and all independent variables considered
altogether (case 1/),

- variable Yt and particular independent variables
considered individually (cases 2/ ÷ 5/).

The values of the coefficient of determination obtained
for the both pattern program loops are presented in Table 2.
For the both pattern program loops, the highest value of R2
for case 1/ has been obtained for a power model. Moreover,
for both loops, the power model is very well fitted for all
other cases, which proves that there is a power
dependency between the dependent variable and each of
the independent variables of the model.

Table 2. Values of coefficient of determination, for various possible
forms of the general model – for the nonInterf loop and for the
matmul loop
Form of
the
model

Case 1/ Case 2/ Case 3/ Case 4/ Case 5/
R2

Yt.X1,X2,

X3,X4
R2

Yt.X1 R2
Yt.X2 R2

Yt.X3 R2
Yt.X4

Loop nonInterf
linear 0.9738 0.0602 0.9239 0.6125 0.6390
power 0.9999 0.8968 0.9957 0.9653 0.9203
exponen
tial 0.9845 0.3399 0.7284 0.8848 0.9194
logarith
mic 0.9557 0.4977 0.7366 0.6611 0.6387
hyperbol
ic 0.9458 0.9239 0.0602 0.5872 0.5997

Loop matmul
linear 0.9506 0.0002 0.9286 0.3616 0.4771
power 0.9999 0.6540 0.9982 0.9119 0.9183
exponen
tial 0.9645 0.1066 0.5703 0.4310 0.9170
logarith
mic 0.8230 0.8095 0.5858 0.5074 0.4774
hyperbol
ic 0.8098 0.7669 0.0014 0.3219 0.4602

Based on the above presented results of the regression

analysis, a regression power model with variables Yt, X1,
X2, X3, X4 and parameters a1, a2, a3, a4 has been
adopted as the general model. Hence, the final form of the
general model is:

(2) 4321 4321 aaaa XXXXYt

where: a1, a2, a3, a4 are parameters whose values have
been determined within the regression analysis on the
empirical data collected in the target software-hardware
environment for a specially prepared sample.

Estimation of the values of parameters for specific
models

It has been assumed that the values of parameters for
specific models should be determined in a methodical way
that could be applied to any environment. Therefore, it has
been decided to determine the values of parameters a1, a2,
a3, a4 for a given hardware environment by means of the
statistical analysis of empirical data collected in this
environment.

To determine the values of parameters a1, a2, a3, a4
we have used pattern program loops. Each pattern program
loop represents a different type of data reuse in the
program. We have used two pattern program loops:
nonInterf and matmul.

Each of the pattern program loops represents some
arbitrarily selected characteristics related to data reuse and
interference.

Taking into account data reuse and interference,
program loops can be classified as follows:

1. Loops with no data reuse – in practice, very rarely
used and therefore, not included in the model

2. Loops with data reuse
2a. Without interference – pattern program loop:

nonInterf
2b. With interference – pattern program loop: matmul
The nonInterf loop exposes data reuse but no

interference.
The matmul loop exposes data reuse and interference.
The source codes of the loops nonInterf and matmul are

presented in Table 1.
It should be stressed here that pattern program loops

nonInterf and matmul are exemplary pattern program loops
with the characteristics as indicated in Table 1. These loops
have been adopted in order to determine exemplary specific
models using the general model (2). This realization of
pattern program loops (i.e. by the nonInterf and matmul
loops) is one of many possible realizations. Assuming some
other realization of pattern program loop 1 and pattern
program loop 2, one could derive specific models with
domains different from the domains of specific models
derived from pattern program loops nonInterf and matmul.
This in turn means that the proposed approach is highly
universal, as it provides the possibility of changing the
domain of a specific model simply by modifying the pattern
program loop for the model.

In order to obtain empirical data that are representative
for the environment under analysis, it has been assumed
that for each pattern program loop the following is true:

1. the total size of the data processed in the loop does
not exceed the size of the L2 processor cache,

2. the relative difference between the mean and
maximum number of iteration chunks per single
OpenMP thread for a given assignment of iterations
to OpenMP threads does not exceed 50 % (the
value assumed a priori).

For assumptions 1. and 2., the exemplary pattern
program loops and hardware environment of empirical
research, one has derived the following specific models:
- for the nonInterf pattern program loop:

(3) 981967.0082602.0675172.00.325431 4321 XXXXYt

- for the matmul pattern program loop:

(4) 962976.0014426.0623738.00.298695 4321 XXXXYt

The results of regression analysis (i.e. the resultant
regression model) should not be extrapolated outside the
data range for which the regression model has been
constructed, since the character of the dependency

PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 91 NR 2/2015 25

between values of independent and dependent variables is
unknown outside the data range in question.

To avoid the risk of such an extrapolation while applying
specific models to non pattern program loops, we have
formulated the following, detailed assumptions regarding
the scope of applicability of specific models.
1. The total size of the data processed in the loop does not
exceed the size of the L2 processor cache. Moreover, the
total size of the data processed in a non pattern program
loop is not less than and not greater than the size of the
data processed in the pattern program loop for which the
specific model has been derived.
2. The relative difference between the mean and maximum
number of iteration chunks per single OpenMP thread for a
given assignment of iterations to OpenMP threads does not
exceed 50 %.
3. The actual duration of execution of a non pattern
program loop in the target environment is not less than and
not greater than the measured, empirical duration of
execution of the pattern program loop for which the specific
model has been derived.

Results of experimental research
In order to prove that the proposed model is indeed

useful in iterative compilation, we have used the NAS
Parallel Benchmarks (NPB) test suite [9, 10]. NPB has been
used as it is a test suite dedicated for the assessment of the
performance of parallel computers and consists of a great
number of very various loops.

8 NPB program loops were selected for the
experimental research. The selected program loops were
different from the pattern program loops, but had the same
type of data reuse as the pattern program loops. By means
of the exemplary specific models, one estimated execution
times of various source code variants of the 8 selected
program loops. In total, one estimated execution times for
133 various source codes.

Table 3. Quality assessment of estimates calculated according to
specific models (3) and (4)

Loop (specific
model)

Size of
the

problem
solved in
the loop

Number of
various

source code
variants

subjected to
the

estimation of
execution

time

Resulta
nt

mean
for

δYt(per_thr

ead)

Result
ant

maxi
mum
for

δYt(per_t

hread)

CG_cg_4 (3) 215 000 8 11.66 24.43
CG_cg_4 (3) 330 000 8 13.66 27.06
FT_auxfnct_2 (3) 30 8 53.34 60.43
FT_auxfnct_2 (3) 38 9 51.54 60.75
LU_HP_pintgr_11
(3)

265 8 16.47 32.85

LU_HP_pintgr_11
(3)

330 8 14.84 28.76

MG_mg_3 (3) 26 000 6 25.96 34.41
MG_mg_3 (3) 88 888 6 31.04 40.51
UA_diffuse_3 (4) 30 9 31.60 38.46
UA_diffuse_3 (4) 50 9 16.88 24.02
UA_diffuse_4 (4) 30 9 28.55 35.80
UA_diffuse_4 (4) 50 9 12.70 20.18
UA_transfer_11 (4) 100 9 10.49 20.44
UA_transfer_11 (4) 267 9 11.30 29.81
UA_transfer_16 (4) 267 9 11.10 29.05
UA_transfer_16 (4) 433 9 14.86 34.97

For each of the selected NPB loops, the trend of
changes in the measured execution times of particular
variants of a given loop has matched the trend of changes
in the corresponding estimations calculated according to the
relevant specific model.

The mean and maximum relative estimation error
calculated in relation to execution times measured
empirically for all source code variants adopted for a given
loop and size of the problem solved in the loop have not
exceeded respectively 55 and 65 per cent points (detailed
results are presented in Table 3).

For each of the selected NPB loops, we have also
estimated the shortening of iterative compilation duration
(and in consequence, the related software development
duration) that could be achieved by applying specific
models in accordance with the authors’ procedure on how
to support iterative compilation with such models. The
meaning of the symbols used is as follows:

t – number of all various input source code variants for a
given loop,

k (0 < k < t) – value given by the user and denoting the
assumed number of source code variants with shortest
estimated execution times for a given loop,

kmin – minimum value of k which guarantees that one
selects for final use the source code variant with the
shortest execution time measured in the hardware
environment.
The achieved results are summarized in Table 4.

Table 4. Shortening of iterative compilation duration after applying
specific models (3) and (4)

Loop (specific
model)

Size of
the

problem
solved in
the loop

t k min

Iterative
compilation
duration (T)

for

Short
ening

of
iterati

ve
compil
ation
durati

on
=

(Tt/Tk
min)

t
sourc

e
code
varia
nts

kmin

sourc
e

code
varia
nts

CG_cg_4 (3) 215 000 8 1
4.33E

+03
3.70E

+02
11.73

CG_cg_4 (3) 330 000 8 1
6.63E

+03
5.61E

+02
11.83

FT_auxfnct_2
(3) 30 8 1

1.97E
+03

1.71E
+02 11.53

FT_auxfnct_2
(3) 38 9 3

4.26E
+03

1.12E
+03 3.82

LU_HP_pintgr_
11 (3)

265 8 1
4.19E

+03
3.58E

+02
11.71

LU_HP_pintgr_
11 (3)

330 8 1
6.46E

+03
5.48E

+02
11.80

MG_mg_3 (3) 26 000 6 1
1.42E

+03
1.68E

+02
8.41

MG_mg_3 (3) 88 888 6 2
4.72E

+03
1.11E

+03
4.27

UA_diffuse_3
(4)

30 9 2
4.75E

+04
7.43E

+03
6.39

UA_diffuse_3
(4)

50 9 1
3.67E

+05
2.87E

+04
12.81

UA_diffuse_4
(4)

30 9 1
4.55E

+04
3.55E

+03
12.80

UA_diffuse_4
(4)

50 9 1
3.49E

+05
2.73E

+04
12.80

UA_transfer_11
(4)

100 9 1
3.94E

+04
3.08E

+03
12.82

UA_transfer_11
(4)

267 9 1
7.54E

+05
5.89E

+04
12.81

UA_transfer_16
(4)

267 9 1
7.53E

+05
5.88E

+04
12.81

UA_transfer_16
(4)

433 9 1
3.22E

+06
2.51E

+05
12.80

26 PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 91 NR 2/2015

Related work
Within the research on optimizing compilation and

program execution time, various methods for forecasting
program execution time [11], estimating program execution
time [12] or selecting the program source code with the
shortest expected execution time [13, 14, 15] have been
proposed.

The approaches, proposed in [11, 12, 13, 14, 15],
provide good tools for the estimation of program execution
time, yet the process of the construction of the related
mathematical models is time consuming and the scope of
the applicability of the resultant models is narrow (the
models are dedicated for specific programs or optimizing
transformations). In view of these characteristics, the
approaches in question are not adequate for carrying out
the proposed improvement of iterative compilation, which
involves analytical selection from possible source code
variants of a given program the ones with shortest expected
execution times in order to limit the empirical selection of
the best source code thereto.

In contrast to the aforementioned methods, applying the
authors’ solution presented herein it is possible to elaborate
models for the estimation of program execution time, which
are adequate both for the pattern program loops for which
the models have been derived and for completely different
(non pattern) program loops which have only the data reuse
type in common with the pattern program loops.

Summary

This paper presents the authors’ family of statistical
models for the estimation of program execution time. The
family consists of a general model and specific models. The
family has been elaborated based on the empirical data
collected for pattern program loops representing some
arbitrarily selected features related to the program structure
and the specificity of program execution environment.

The elaborated general model (and hence, each specific
model derived from the general model) is dedicated to
programs parallelized in the OpenMP C/C++ standard and
in its current form, i.e. with its current independent
variables, cannot be applied to programs parallelized in any
other standard. However, the idea of pattern program loops
and creating specific models based on pattern program
loops could be used for elaborating models for programs
parallelized in different standards than OpenMP C/C++ –
yet, in such a case, one would have to elaborate a new list
of independent variables dedicated to the used
parallelization standard.

Exemplary specific models belonging to the family have
been used to estimate execution times of non pattern
program loops. The accuracy of the estimations is
satisfactory.

We have also estimated the shortening of iterative
compilation duration (and in consequence, the related
software development duration) which could be achieved by
applying specific models in accordance with the proposed
procedure of supporting iterative compilation with such
models. For the exemplary loops presented in the paper
and coming from the NPB test suite, the duration of iterative
compilation has been shortened from approximately 4 to
approximately 13 times (detailed results are presented in
Table 4).

The achieved results show that the authors’ solution
presented in the paper is adequate for use in iterative
compilation for optimization purposes and at the same time
gives a possibility of shortening the duration of software
development.

REFERENCES
 [1] I sh izaka K., Oba ta M., Kasahara H., Coarse grain task

parallel processing with cache optimization on shared memory
multiprocessor, Languages and Compilers for Parallel
Computing, 2003, 352-365

[2] Kaz i I.H., L i l j a D.J., Coarse-grained Speculative Execution in
Shared-memory Multiprocessors, Proceedings of the 1998
International Conference on Supercomputing – ICS '98, 1998,
93-100

[3] Aho A.V., Lam M.S., Se th i R., U l lman J.D., Compilers:
Principles, Techniques, and Tools (2nd Edition). Addison
Wesley, 2006

[4] Co leman S., McKin ley K.S., Tile Size Selection Using
Cache Organization and Data Layout, ACM SIGPLAN Notices,
30 (1995), Issue 6, 279-290

[5] Essegh i r K., Improving data locality for caches. Master’s
thesis, Department of Computer Science, Rice University, 1993

[6] Temam O., F r i cke r C., Ja lby W., Cache interference
phenomena, ACM SIGMETRICS Performance Evaluation
Review, 22 (1994), Issue 1, 261-271

[7] Lam M.S., Ro thberg E.E., Wo l f M.E., The Cache
Performance and Optimization of Blocked Algorithms, ACM
SIGARCH Computer Architecture News, 19 (1991), No. 2, 63-
74

[8] Wo l fe M., High Performance Compilers for Parallel
Computing. Addison-Wesley, 1996

[9] Haoq iang J., F rumk in M., Yan J., The OpenMP
implementation of NAS parallel benchmarks and its
performance. Technical Report NAS-99-011, NASA Ames
Research Center, 1999

[10] NAS Parallel Benchmarks,
http://www.nas.nasa.gov/publications/npb.html

[11] Ber l ińska J., Metody tworzenia modeli statystycznych
charakteryzujących aplikacje równoległe i rozproszone.
Rozprawa doktorska. Politechnika Szczecińska, 2005

[12] Lokuc ie jewsk i P., S to lpe M., Mor i k K., Marwede l P.,
Automatic Selection of Machine Learning Models for WCET-
aware Compiler Heuristic Generation, Proceedings of the 4th
Workshop on Statistical and Machine Learning Approaches to
Architectures and Compilation (SMART), 2010, 3-17

[13] Cavazos J., O ’Boy le M.F.P., Method-Specific Dynamic
Compilation using Logistic Regression, ACM SIGPLAN
Notices, 41 (2006), No. 10, 229-240

[14] Park E., Ku lka rn i S., Cavazos J., An Evaluation of
Different Modeling Techniques for Iterative Compilation,
Proceedings of the 14th international conference on compilers,
architectures and synthesis for embedded systems, 2011, 65-
74

[15] Pekh imenko G., B rown A.D., Efficient Program
Compilation through Machine Learning Techniques, Software
Automatic Tuning, 2010, 335-351

Authors: dr inż. Agnieszka Kamińska, Zachodniopomorski
Uniwersytet Technologiczny w Szczecinie, Katedra Inżynierii
Oprogramowania, ul. Żołnierska 49, 71-210 Szczecin, E-mail:
agnieszka_kaminska@wp.pl; prof. dr hab. inż. Włodzimierz
Bielecki, Zachodniopomorski Uniwersytet Technologiczny w
Szczecinie, Katedra Inżynierii Oprogramowania, ul. Żołnierska 49,
71-210 Szczecin, E-mail: wbielecki@wi.zut.edu.pl

