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Abstract. This paper presents a family of statistical models for the estimation of program execution time. The paper discusses the possibilities of 
how to apply the family to reduce iterative compilation duration and in consequence, software development duration. The discussion is supported 
with the results of experimental research carried out for program loops selected from the NAS Parallel Benchmarks test suite. 
 
Streszczenie. W artykule przedstawiono autorską koncepcję rodziny modeli statystycznych do oszacowania czasu wykonania programu oraz 
omówiono możliwości wykorzystania jej w celu skrócenia czasu wykonywania kompilacji iteracyjnej (a w konsekwencji czasu wytwarzania 
oprogramowania). Przedstawiono także wyniki przeprowadzonych badań eksperymentalnych. (Modele statystyczne do oszacowania czasu 
wykonania aplikacji gruboziarnistych w standardzie OpenMP). 
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Problem statement 

Limitations resulting from laws of physics impose a 
barrier on further miniaturization and increase of the speed 
of uniprocessors. On the other hand, data processing 
duration is crucial in many practical applications of 
computers. For these reasons, the use of multiprocessor 
computers allowing for parallel computing has become an 
alternative for reducing data processing time by increasing 
the speed of uniprocessors.  

Parallel applications can be created either manually (i.e. 
by a developer) or automatically (i.e. by dedicated 
parallelizing compilers). Since the manual creation of 
parallel applications is very time consuming and more error 
prone than it is desired, the automatic creation of parallel 
applications is a more popular approach, especially in case 
of commercial software development. The idea of this 
approach is to transform, at the compilation stage, a 
sequential program into a semantically equivalent parallel 
program. If the semantics of a given sequential program is 
such that the program can be parallelized, there is always 
more than one way of carrying out the parallelization and 
the main difference between the particular ways is the 
execution time of the resultant executables in the target 
environment. This means that the parallelizing 
transformations selected at the compilation stage influence 
the execution time of the parallelized program. Within the 
compilation known as optimizing, one tries to select such 
transformations that allow us to achieve the shortest 
execution time of the resultant executable in the target 
hardware environment  

In view of great complexity of the organization and 
architecture of modern computers, methods used in 
optimizing compilation do not make it possible to 
undoubtedly indicate which of possible versions of the 
source code of a given program will have the shortest 
execution time in a given target environment. Using these 
methods, it is possible to find approximate solutions; 
whereas iterative compilation is still the only way of finding 
the exact solution. Within iterative compilation, all 
considered and semantically equivalent source codes of a 
given program are executed in the target hardware 
environment; their execution times are compared and the 
source code with the shortest execution time is selected for 
final use. Iterative compilation can be very time consuming 
and thus, costly in practical applications, especially in case 
of commercial software development. Therefore, a potential 
improvement in iterative compilation is to use a 

mathematical model in order to select from possible source 
code variants of a given program the ones with shortest 
expected execution times and then, limit the empirical 
selection of the best source code to the so reduced set. In 
such a way, the time of software development can be 
reduced – since, by using estimations, one can quickly 
focus iterative compilation on empirical verification 
(execution in the target environment) of solely the most 
promising source code variants.  

Potential practical advantages related to the proposed 
improvement in iterative compilation and the scientific gap 
found in this area have become an inspiration for the 
authors’ solution presented in this paper and involving the 
elaboration of the family of iterative compilation oriented 
statistical models for the estimation of program execution 
time.  

Since most of time consuming operations – calculations 
made within computer programs – are executed in loops, 
the scope of applicability of the elaborated family of 
statistical models has been limited to a class of parallelized 
loops, which is often used in practice: coarse grained loops, 
parallelized in the OpenMP C/C++ standard. Coarse 
grained granulation  [1] takes place when the duration of 
execution of data processing related operations in the 
program is longer than the total duration of initializing these 
operations and transfer of the data needed for the execution 
of these operations. This type of granulation corresponds 
with the nested loop structure in which the outermost loop 
of the nest is parallelized. 

Coarse grained granulation is typically used in 
parallelization of programs executed by currently very 
popular multiprocessor machines with shared memory [2]. 
 
Family of statistical models for the estimation of 
program execution time 

A family of statistical models for the estimation of 
program execution time is based on authors’ general model, 
i.e. the general equation of a function which makes it 
possible to estimate the execution time of coarse grained 
program loops parallelized in the OpenMP C/C++ standard.  

Program execution time has been assumed as the 
dependent variable of a general model. One has assumed 
that quantitative variables reflecting factors which 
significantly influence program execution time should be the 
independent variables of the general model. Apart from the 
dependent and independent variables, the general model 
comprises parameters whose values are unknown a priori.  
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It has been decided that the values of these parameters 
should be determined for a specific hardware environment, 
based on the regression analysis carried out for empirical 
data collected in this environment. In order to collect the 
required empirical data, we have used programs prepared 
specially for this purpose. These programs are hereafter 
referred to as pattern program loops. Each pattern program 
loop represents a combination of some arbitrarily assumed 
characteristics related to data reuse and interference. 
Interference takes place when a cache line containing data 
which can be reused in the program is overwritten with new 
data, despite the fact that there is sufficient unoccupied 
space in the cache where the new data could well be 
fetched – however, because of the cache organization, a 
specific and already occupied cache line has to be 
overwritten instead [3, 4, 5, 6]. 

In order to elaborate a family of statistical models, we 
have used two exemplary pattern program loops: nonInterf 
(representing data reuse with no interference) and matmul 
(representing data reuse with interference).  

The source codes of the both pattern program loops are 
presented in Table 1. 
 

Table 1. Pattern program loops 
Pattern program loop 1:  

Data reuse with no interference 
Pattern program loop 2:  

Data reuse with interference 
Loop nonInterf 

 
int ma[N][N],mb[N][N],mc[N][N], 
md[N][N],me[N][N]; 
int i, j, N; 
 
for (i = 0; i <= N-1; i++) { 
 for (j = 0; j <= N-1; j++) { 
  ma[i][j] = 1; 
  mb[i][j] = mc[i][j] + 

md[i][j]*me[i][j]; 
 } //endfor j 
} //endfor i 

Loop matmul 
 
int ma[N][N],mb[N][N],mc[N][N]; 
int i, j, k, r, N; 
 
for (i = 0; i <= N-1; i++) { 
 for (k = 0; k <= N-1; k++) { 
  r = ma[i][k]; 
   for (j = 0; j <= N-1; j++){ 
    mc[i][j] = mc[i][j] + 

r*mb[k][j]; 
   } //endfor j 
 } //endfor k 
} //endfor i 

 

After substituting the parameters of the general model 
with values, the general model becomes a specific one. The 
specific model specifies the general model for a particular 
situation, by assigning relevant values to the parameters of 
the general model. 

Each specific model is derived from the general model 
for a particular pattern program loop. The specific model 
can be applied both to its pattern program loop and to other 
programs with the same data reuse type as the pattern 
program loop. The other programs in question are hereafter 
referred to as non pattern program loops.  

In order to avoid the extrapolation of the specific model 
beyond the data range for which the model is constructed, 
we have elaborated assumptions regarding the scope of 
applicability of the specific model to non pattern program 
loops. 
 

Form of the general model 
The execution time of every program results from the 

interaction of many various factors. The following factors 
influence program execution time: 

a) the structure of the parallel program and the type of 
parallelism exposed by the program,  

b) the specificity of the problem solved in parallel, 
c) parameters of the hardware environment in which the 

parallelized program is to be executed.  
In the model, particular factors are represented by 

quantitative variables, in the following way: 
a) The structure of the parallel program and the type of 

parallelism exposed by the program 
In the OpenMP C/C++ standard, programs are 

parallelized by multithreading. The time of the execution of 
the parallelized program depends on the number of invoked 
OpenMP threads – therefore, the number of OpenMP 
threads executing the program has been adopted as an 
independent variable (X4) of the general model.  

The duration of execution of the entire task (program 
loop) is determined by the execution time of the thread 
which has been assigned to execute the greatest number of 
iterations, and in particular by the size of the largest chunk 
of iterations assigned to this thread. Therefore, we have 
adopted as an independent variable (X3) of the general 
model the maximum number of iterations in a single chunk 
of iterations assigned to be executed by an OpenMP thread 
for a given assignment of iterations to OpenMP threads. 

b) The specificity of the problem solved in parallel 
From the low level perspective, the specificity and 

variety of problems solved in computer programs are 
reflected in the number and type of arithmetic operations to 
be executed by a processor. A simple yet effective way of 
expressing this observation quantitatively is to assign 
different weights to different types of arithmetic operations. 
The weights should be selected based on the analysis of 
the execution times of instructions of a given processor. 
Therefore, the total weighted number of arithmetic 
operations per single program thread has been adopted as 
an independent variable (X2) of the general model. 

c) Cache and its organization 
The program execution time depends on: 
1. the actual data storage capacity of the processor cache 
memory in a given computer system and its replacement 
policy (associativity), 
2. the minimum data storage capacity of direct-mapped 
cache, which is necessary in order to contain all the data 
processed in the program, assuming the full reuse of the 
data stored in the cache memory; the minimum data 
storage capacity in question can be estimated by means of 
data footprint (according to the methods presented in [7] 
and [8]); in order to calculate the data footprint for a given 
program, it is sufficient to know its source code; there is no 
need to execute this program.    
3. the relation between 1. and 2. 

In connection with the above, the relation between 1. 
and 2. has been adopted as an independent variable (X1) 
of the general model.  

With such a list of independent variables of the model to 
be formulated and assuming that the dependent variable is 
Yt representing estimated CPU time for the execution of the 
program loop by all program threads, expressed by the 
number of CPU clock cycles, we have carried out a 
regression analysis. Empirical data for the regression 
analysis have been collected for two pattern program loops 
(nonInterf and matmul) prepared specially for that purpose. 

According to the assumptions of the linear regression, 
the dependency between the observed values of dependent 
variable Y and corresponding values of independent 
variables X1, X2, …, Xp is expressed by the following 
expression (1): 

 

(1)   iiiipiii YtXpaXaXaaY   ...21 210  
 

where: i  – i = 1, 2, …, n are identifiers of observations, a0, 
…, ap – parameters of unknown exact values; the values of 
these parameters are estimated by means of the classical 
method of least squares, X1i, …, Xpi – known values of 
independent variables X1, X2, …, Xp, corresponding to the 
value of variable Y observed in the ith observation, Yi – 
value of dependent variable Y observed in the ith 
observation, Yti – theoretical (estimated) value of dependent 
variable Y for the ith observation, εi – statistical error 
(disturbance, noise) for the ith observation. 
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Equation (1) can be applied when the dependency 
between empirical values of the dependent variable and 
independent variables is linear. Equation (1) can be also 
applied when the dependency between the variables is a 
nonlinear dependency represented with a nonlinear function 
however, after applying relevant mathematical operations 
(e.g. logarithms), the nonlinear function can be transformed 
to a linear equivalent. This kind of transformation can be 
carried out for the following types of nonlinear functions: 
power, exponential, logarithmic or hyperbolic.  

Therefore, for independent variables: X1, X2, X3, X4 
and dependent variable Yt the general model (which is a 
linear regression model derived by means of the classical 
method of least squares) could take one of the following 
forms: a linear form, a power form, an exponential form, a 
logarithmic form or a hyperbolic form. 

Taking into account the nature of variables X1, X2, X3, 
X4, Yt and their mutual relations, one could assume that the 
dependency between all these variables can be described 
with a power expression.  

This assumption has been verified by the examination of 
the value of coefficient of determination (R2) calculated for: 

- variable Yt and all independent variables considered 
altogether (case 1/), 

- variable Yt and particular independent variables 
considered individually (cases 2/ ÷ 5/). 

The values of the coefficient of determination obtained 
for the both pattern program loops are presented in Table 2. 
For the both pattern program loops, the highest value of R2 
for case 1/ has been obtained for a power model. Moreover, 
for both loops, the power model is very well fitted for all 
other cases, which proves that there is a power 
dependency between the dependent variable and each of 
the independent variables of the model.  
 

Table 2. Values of coefficient of determination, for various possible 
forms of the general model – for the nonInterf loop and for the 
matmul loop 
Form of 
the 
model 

Case 1/ Case 2/ Case 3/ Case 4/ Case 5/ 
R2

Yt.X1,X2,

X3,X4 
R2

Yt.X1 R2
Yt.X2 R2

Yt.X3 R2
Yt.X4 

Loop nonInterf 
linear  0.9738 0.0602 0.9239 0.6125 0.6390
power 0.9999 0.8968 0.9957 0.9653 0.9203
exponen
tial  0.9845 0.3399 0.7284 0.8848 0.9194
logarith
mic  0.9557 0.4977 0.7366 0.6611 0.6387
hyperbol
ic  0.9458 0.9239 0.0602 0.5872 0.5997

Loop matmul 
linear  0.9506 0.0002 0.9286 0.3616 0.4771
power 0.9999 0.6540 0.9982 0.9119 0.9183
exponen
tial  0.9645 0.1066 0.5703 0.4310 0.9170
logarith
mic  0.8230 0.8095 0.5858 0.5074 0.4774
hyperbol
ic  0.8098 0.7669 0.0014 0.3219 0.4602

 
Based on the above presented results of the regression 

analysis, a regression power model with variables Yt, X1, 
X2, X3, X4 and parameters a1, a2, a3, a4 has been 
adopted as the general model. Hence, the final form of the 
general model is: 

 

(2)  4321 4321 aaaa XXXXYt   
 
where: a1, a2, a3, a4 are parameters whose values have 
been determined within the regression analysis on the 
empirical data collected in the target software-hardware 
environment for a specially prepared sample. 

Estimation of the values of parameters for specific 
models 

It has been assumed that the values of parameters for 
specific models should be determined in a methodical way 
that could be applied to any environment. Therefore, it has 
been decided to determine the values of parameters a1, a2, 
a3, a4 for a given hardware environment by means of the 
statistical analysis of empirical data collected in this 
environment.  

To determine the values of parameters a1, a2, a3, a4 
we have used pattern program loops. Each pattern program 
loop represents a different type of data reuse in the 
program. We have used two pattern program loops: 
nonInterf and matmul.  

Each of the pattern program loops represents some 
arbitrarily selected characteristics related to data reuse and 
interference.  

Taking into account data reuse and interference, 
program loops can be classified as follows: 

1. Loops with no data reuse – in practice, very rarely 
used and therefore, not included in the model  

2. Loops with data reuse  
2a. Without interference – pattern program loop: 

nonInterf  
2b. With interference – pattern program loop: matmul 
The nonInterf loop exposes data reuse but no 

interference.  
The matmul loop exposes data reuse and interference.  
The source codes of the loops nonInterf and matmul are 

presented in Table 1. 
It should be stressed here that pattern program loops 

nonInterf and matmul are exemplary pattern program loops 
with the characteristics as indicated in Table 1. These loops 
have been adopted in order to determine exemplary specific 
models using the general model (2). This realization of 
pattern program loops (i.e. by the nonInterf and matmul 
loops) is one of many possible realizations. Assuming some 
other realization of pattern program loop 1 and pattern 
program loop 2, one could derive specific models with 
domains different from the domains of specific models 
derived from pattern program loops nonInterf and matmul. 
This in turn means that the proposed approach is highly 
universal, as it provides the possibility of changing the 
domain of a specific model simply by modifying the pattern 
program loop for the model. 

In order to obtain empirical data that are representative 
for the environment under analysis, it has been assumed 
that for each pattern program loop the following is true: 

1. the total size of the data processed in the loop does 
not exceed the size of the L2 processor cache, 

2. the relative difference between the mean and 
maximum number of iteration chunks per single 
OpenMP thread for a given assignment of iterations 
to OpenMP threads does not exceed 50 % (the 
value assumed a priori). 

For assumptions 1. and 2., the exemplary pattern 
program loops and hardware environment of empirical 
research, one has derived the following specific models: 
- for the nonInterf pattern program loop: 

 

(3) 981967.0082602.0675172.00.325431 4321 XXXXYt    
 

- for the matmul pattern program loop: 
 

(4) 962976.0014426.0623738.00.298695 4321 XXXXYt    
 

The results of regression analysis (i.e. the resultant 
regression model) should not be extrapolated outside the 
data range for which the regression model has been 
constructed, since the character of the dependency 
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between values of independent and dependent variables is 
unknown outside the data range in question.  

To avoid the risk of such an extrapolation while applying 
specific models to non pattern program loops, we have 
formulated the following, detailed assumptions regarding 
the scope of applicability of specific models. 
1. The total size of the data processed in the loop does not 
exceed the size of the L2 processor cache. Moreover, the 
total size of the data processed in a non pattern program 
loop is not less than and not greater than the size of the 
data processed in the pattern program loop for which the 
specific model has been derived. 
2. The relative difference between the mean and maximum 
number of iteration chunks per single OpenMP thread for a 
given assignment of iterations to OpenMP threads does not 
exceed 50 %. 
3. The actual duration of execution of a non pattern 
program loop in the target environment is not less than and 
not greater than the measured, empirical duration of 
execution of the pattern program loop for which the specific 
model has been derived. 
 

Results of experimental research 
In order to prove that the proposed model is indeed 

useful in iterative compilation, we have used the NAS 
Parallel Benchmarks (NPB) test suite [9, 10]. NPB has been 
used as it is a test suite dedicated for the assessment of the 
performance of parallel computers and consists of a great 
number of very various loops.  

8 NPB program loops were selected for the 
experimental research. The selected program loops were 
different from the pattern program loops, but had the same 
type of data reuse as the pattern program loops. By means 
of the exemplary specific models, one estimated execution 
times of various source code variants of the 8 selected 
program loops. In total, one estimated execution times for 
133 various source codes.  
 

Table 3. Quality assessment of estimates calculated according to 
specific models (3) and (4) 

Loop (specific 
model) 

Size of 
the 

problem 
solved in 
the loop 

Number of 
various 

source code 
variants 

subjected to 
the 

estimation of 
execution 

time 

Resulta
nt 

mean 
for 

δYt(per_thr

ead) 

Result
ant 

maxi
mum 
for 

δYt(per_t

hread) 

CG_cg_4 (3) 215 000 8 11.66 24.43 
CG_cg_4 (3) 330 000 8 13.66 27.06 
FT_auxfnct_2 (3) 30 8 53.34 60.43 
FT_auxfnct_2 (3) 38 9 51.54 60.75 
LU_HP_pintgr_11 
(3) 

265 8 16.47 32.85 

LU_HP_pintgr_11 
(3) 

330 8 14.84 28.76 

MG_mg_3 (3) 26 000 6 25.96 34.41 
MG_mg_3 (3) 88 888 6 31.04 40.51 
UA_diffuse_3 (4) 30 9 31.60 38.46 
UA_diffuse_3 (4) 50 9 16.88 24.02 
UA_diffuse_4 (4) 30 9 28.55 35.80 
UA_diffuse_4 (4) 50 9 12.70 20.18 
UA_transfer_11 (4) 100 9 10.49 20.44 
UA_transfer_11 (4) 267 9 11.30 29.81 
UA_transfer_16 (4) 267 9 11.10 29.05 
UA_transfer_16 (4) 433 9 14.86 34.97 

 

For each of the selected NPB loops, the trend of 
changes in the measured execution times of particular 
variants of a given loop has matched the trend of changes 
in the corresponding estimations calculated according to the 
relevant specific model.  

The mean and maximum relative estimation error 
calculated in relation to execution times measured 
empirically for all source code variants adopted for a given 
loop and size of the problem solved in the loop have not 
exceeded respectively 55 and 65 per cent points (detailed 
results are presented in Table 3). 

For each of the selected NPB loops, we have also 
estimated the shortening of iterative compilation duration 
(and in consequence, the related software development 
duration) that could be achieved by applying specific 
models in accordance with the authors’ procedure on how 
to support iterative compilation with such models. The 
meaning of the symbols used is as follows:  

t – number of all various input source code variants for a 
given loop, 

k (0 < k < t) – value given by the user and denoting the 
assumed number of source code variants with shortest 
estimated execution times for a given loop, 

kmin – minimum value of k which guarantees that one 
selects for final use the source code variant with the 
shortest execution time measured in the hardware 
environment.  
The achieved results are summarized in Table 4. 
 

Table 4. Shortening of iterative compilation duration after applying 
specific models (3) and (4) 

Loop (specific 
model) 

Size of 
the 

problem 
solved in 
the loop 

t k min 

Iterative 
compilation 
duration (T) 

for 

Short
ening 

of 
iterati

ve 
compil
ation 
durati

on 
= 

(Tt/Tk
min) 

t 
sourc

e 
code 
varia
nts  

kmin 

sourc
e 

code 
varia
nts 

CG_cg_4 (3) 215 000 8 1 
4.33E

+03 
3.70E

+02
11.73 

CG_cg_4 (3) 330 000 8 1 
6.63E

+03 
5.61E

+02
11.83 

FT_auxfnct_2 
(3) 30 8 1 

1.97E
+03 

1.71E
+02 11.53 

FT_auxfnct_2 
(3) 38 9 3 

4.26E
+03 

1.12E
+03 3.82 

LU_HP_pintgr_
11 (3) 

265 8 1 
4.19E

+03 
3.58E

+02
11.71 

LU_HP_pintgr_
11 (3) 

330 8 1 
6.46E

+03 
5.48E

+02
11.80 

MG_mg_3 (3) 26 000 6 1 
1.42E

+03 
1.68E

+02
8.41 

MG_mg_3 (3) 88 888 6 2 
4.72E

+03 
1.11E

+03
4.27 

UA_diffuse_3 
(4) 

30 9 2 
4.75E

+04 
7.43E

+03
6.39 

UA_diffuse_3 
(4) 

50 9 1 
3.67E

+05 
2.87E

+04
12.81 

UA_diffuse_4 
(4) 

30 9 1 
4.55E

+04 
3.55E

+03
12.80 

UA_diffuse_4 
(4) 

50 9 1 
3.49E

+05 
2.73E

+04
12.80 

UA_transfer_11 
(4) 

100 9 1 
3.94E

+04 
3.08E

+03
12.82 

UA_transfer_11 
(4) 

267 9 1 
7.54E

+05 
5.89E

+04
12.81 

UA_transfer_16 
(4) 

267 9 1 
7.53E

+05 
5.88E

+04
12.81 

UA_transfer_16 
(4) 

433 9 1 
3.22E

+06 
2.51E

+05
12.80 
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Related work 
Within the research on optimizing compilation and 

program execution time, various methods for forecasting 
program execution time  [11], estimating program execution 
time  [12] or selecting the program source code with the 
shortest expected execution time  [13, 14, 15] have been 
proposed. 

The approaches, proposed in [11, 12, 13, 14, 15], 
provide good tools for the estimation of program execution 
time, yet the process of the construction of the related 
mathematical models is time consuming and the scope of 
the applicability of the resultant models is narrow (the 
models are dedicated for specific programs or optimizing 
transformations). In view of these characteristics, the 
approaches in question are not adequate for carrying out 
the proposed improvement of iterative compilation, which 
involves analytical selection from possible source code 
variants of a given program the ones with shortest expected 
execution times in order to limit the empirical selection of 
the best source code thereto. 

In contrast to the aforementioned methods, applying the 
authors’ solution presented herein it is possible to elaborate 
models for the estimation of program execution time, which 
are adequate both for the pattern program loops for which 
the models have been derived and for completely different 
(non pattern) program loops which have only the data reuse 
type in common with the pattern program loops. 
 
Summary 

This paper presents the authors’ family of statistical 
models for the estimation of program execution time. The 
family consists of a general model and specific models. The 
family has been elaborated based on the empirical data 
collected for pattern program loops representing some 
arbitrarily selected features related to the program structure 
and the specificity of program execution environment.  

The elaborated general model (and hence, each specific 
model derived from the general model) is dedicated to 
programs parallelized in the OpenMP C/C++ standard and 
in its current form, i.e. with its current independent 
variables, cannot be applied to programs parallelized in any 
other standard. However, the idea of pattern program loops 
and creating specific models based on pattern program 
loops could be used for elaborating models for programs 
parallelized in different standards than OpenMP C/C++ – 
yet, in such a case, one would have to elaborate a new list 
of independent variables dedicated to the used 
parallelization standard.  

Exemplary specific models belonging to the family have 
been used to estimate execution times of non pattern 
program loops. The accuracy of the estimations is 
satisfactory.  

We have also estimated the shortening of iterative 
compilation duration (and in consequence, the related 
software development duration) which could be achieved by 
applying specific models in accordance with the proposed 
procedure of supporting iterative compilation with such 
models. For the exemplary loops presented in the paper 
and coming from the NPB test suite, the duration of iterative 
compilation has been shortened from approximately 4 to 
approximately 13 times (detailed results are presented in 
Table 4). 

The achieved results show that the authors’ solution 
presented in the paper is adequate for use in iterative 
compilation for optimization purposes and at the same time 
gives a possibility of shortening the duration of software 
development. 
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