
PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 91 NR 2/2015 31

Stanisław Jerzy NIEPOSTYN

Warsaw University of Technology

doi:10.15199/48.2015.02.08

The Sufficient Criteria For Consistent Modelling Of The Use
Case Realization Diagrams With A New Functional-Structure-

Behaviour UML Diagram

Abstract. UML activity diagrams are primarily used to visualise scenarios. The verification of activity diagrams consistency is subsequently needed
to identify errors in requirements at the early stage of the development process. The consistency verification is difficult due to a semi-formal nature of
activity diagrams. We propose to extend the activity diagram to the new Functional-Structure-Behaviour (FSB) UML diagram to enable automatic
verification of consistency of scenarios of the visualized use cases. Moreover the FSB UML diagram enables simultaneous modelling of the
functionality, of the structure and of the behaviour of the target system model. Thus the proposed Functional-Structure-Behaviour UML activity
diagram enables consistent and complete models to be developed from scenarios. Furthermore the FSB UML activity diagram can be used for
automatic generation of complete workflow applications without any manual programming.

Streszczenie. Diagramy aktywności UML używane są przede wszystkim do wizualizacji scenariuszy. W celu wyeliminowania błędów w przyszłym
systemie niezbędny okazuje się proces weryfikacji tych diagramów UML. Weryfikacja spójności jest jednakże dość złożonym zagadnieniem, gdyż
diagramy aktywności nie są formalnym sposobem zapisu wymagań. Proponujemy rozszerzenie diagramów aktywności UML do diagramów
nazwanych przez nas diagramami Funkcjonalność-Struktura-Behawioryzm (FSB) UML które umożliwiają automatyzację weryfikacji spójności
scenariuszy wizualizowanych przypadków użycia. Co więcej diagram FSB UML umożliwia równoczesne modelowanie funkcjonalności, struktury i
zachowania docelowego modelu systemu. Dlatego też zaproponowany diagram aktywności FSB UML umożliwia również opracowywanie kolejnych
spójnych i kompletnych modeli na jego podstawie. Ponadto diagram aktywności FSB UML może być wykorzystany do automatyzacji generowania
aplikacji typu workflow bez potrzeby ręcznego programowania. Warunki wystarczające do spójnego modelowania diagramów realizacji
przypadku użycia z wykorzystaniem ulepszonego diagramu aktywności FSB UML.

Keywords: UML, consistency, sufficient consistency, completeness, FSB UML diagram.
Słowa kluczowe: UML, spójność, wystarczające spójność, kompletność, diagram aktywności FSB UML.

Introduction

In object-oriented software development, the UML [1]
has become the standard notation for the software
architecture modelling at different stages of the life cycle
and at different views of the software system, including the
requirements specification. Thus in the majority of projects
using UML diagrams [2, 3], use case diagrams are
developed at the beginning of software development to
describe the main functions of the software-based system.
Then class diagrams are created to show the structure of
the system, and state machine diagrams are built to show
the behaviour of system elements ([4, 5]). Subsequently
activity diagram can be used to verify consistency of other
diagrams. This kind of diagram is also used to visualize
scenarios and is called “use case realization diagram”.
Notably the use case realization diagram has been formally
integrated neither with the class diagram nor with the state
machine diagram. In this paper we propose to reverse
these activities: firstly we prepare the activity diagram, then
we derive class, use case and state machine diagrams.

An early consistency check of the use case realization
diagram seems crucial for the consistency and
completeness of the software architecture, but proves to be
difficult due to the informal nature of activity specifications.
By the sufficient criteria for consistent modelling use case
realization diagram we mean that:
 all flow paths of an activity diagram can be performed;
 a diagram describing the structure aspect of the system

can be generated;
 a diagram describing the behaviour aspect of the

system can be generated;
 all elements of the activity diagram must be mapped

onto generated diagrams.
We propose to extend the activity UML diagram to the

Functional-Structure-Behaviour (FSB) UML diagram to
enable automatic verification of consistency and
completeness of scenarios of the visualized use cases. The
aim of the consistency analysis is to validate that all flows

are connected. Next we propose to check that each activity
and each instance of object in our activity diagram has link
with each key element of the subsequent generated UML
diagrams.

The object pseudo-code can be used to formalize this
problem and to provide a tool to support the analysis. The
idea with Z formalization was presented in [6] to keep the
sufficient consistency and completeness between class,
state machine and use case diagrams based on DCD
Diagram. This idea was proved and extended in [7] for
class, state machine and use case diagrams based on FSB
UML diagram. Here algorithms are presented, because
such object pseudo-code may be easily implemented in
Java coding tools.

Based on our previous work cited above, this article
presents the sufficient criteria for consistent modelling of the
use case realization diagrams with a Functional-Structure-
Behaviour UML diagram. In order to apply the proposed
criteria we provide a semantics for FSB UML diagram with
the object pseudo-code. We also improve the already
known criteria and introduce new rules for the analysis
phase. Our concepts are logically extended from the
previous papers based on experience of IT projects publicly
procured in Poland within the period 2013 – 2014 to the
Ministry of Finance and to the Agency for Restructuring and
Modernisation of Agriculture. It is also underlined here that
the proposed criteria for consistent modelling enable
automatic modelling of IT systems.

The paper is organized as follows: in section 2 the
related works on consistency checking of UML diagrams
are reviewed, and then completeness and types of
inconsistencies are described. In section 3 the rule-based
method for consistent modelling of the use case realization
diagrams with a Functional-Structure-Behaviour UML
diagram is described. The rationale for applying the FSB
UML diagram to derive the complete and consistent UML
model is given in section 4. Section 5 concludes the paper.

32 PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 91 NR 2/2015

Related Works
Different software models could describe the same

system from different points of view, at different levels of
abstraction and granularity, possibly in different notations.
They may represent the perspectives and goals of different
stakeholders. Usually some inconsistencies between
models are arising [8]. Inconsistencies in models reveal
design problems. Obviously earlier the problems are
detected during the software design, lower is the cost of
fixing them.

UML models are translated into programming
languages. Inconsistent UML model may result in an
imprecise code. Inconsistencies usually reflect conflicts
between the views and goals of the different stakeholders,
thus indicating those aspects of the system which should be
analysed.

As shown in [9], there are several methods to verify
consistency in UML diagrams: meta-model-based method
[10], graph-based method [11], scenario-based method,
constraint-based methods and knowledge-based methods
[12]. We are focusing here on constraint-based methods
and on graph-based methods.

Egyed proposed methods for fixing inconsistencies in
UML diagrams [13]. Those methods were regarding class,
state, object and sequence UML diagrams. Another
approach to check consistency of activity diagrams was
proposed by Jurack et el. in [14]. In this method the
consistency of the activity diagram was validated by
checking whether all flow paths could be performed.
Shinkawa in his research [15] proposed to generate
consistent UML diagrams from the activity diagram based
on Coloured Petri Net. A few rules for consistency between
activity diagrams and use case diagrams were proposed
Ibrahim [16].

Our research focuses attention to consistency of class,
state machine, and use case UML diagrams derived from
the use case realization diagram. We propose the sufficient
criteria for consistent modelling of use case realization
diagram to generate consistent class and state machine
diagrams. Specifically we propose here to make use of the
FSB UML diagram as the use case realization diagram.

Moreover our approach enables to model or to describe
the system in three dimensions i.e. function, structure and
behaviour. Goel, Rugaber, and Vattam proposed in [17] the
structure, behaviour, and function modelling language
(hereinafter shortcut SBF) based on the Functional-
Structure-Behaviour (FSB) framework introduced by John
Gero [18].

Criteria of Consistency
According to Functional-Structure-Behaviour (FSB)

framework introduced by John Gero [18] the purpose of the
design description is to transfer sufficient information about
target system to enable its construction. The description
must at least encompass a function, a structure, and
behaviour of the target system. Therefore the development
of software in which one cannot take into account these
three dimensions, are “doomed to fail”. Truyen [19]
described a Model, in major MDA concepts, as a formal
specification of the function, structure and behaviour of a
system. He claims that any Model must be represented by a
combination of UML diagrams. That leads to a situation, in
which model inconsistencies may arise (Spanoudakis and
Zisman [8]).

In this section we explain in an informal way the model
consistency, which we subsequently apply to the modelling
of the use case realization diagram. Then we present our
concept of the sufficient criteria for consistent modelling

UML diagrams which form consistent and complete
description of software architecture.

Model Driven Rules for Consistency
To assert that something is consistent we have to

declare what it is consistent with. Software models describe
each system from different points of view, at different levels
of abstraction and granularity, and in different notations.
They may represent viewpoints and goals of different
stakeholders. Usually inconsistencies between diagrams
are arising because some models are overlapping [8].
Inconsistencies reveal design problems. The consistency
rules can be found in formal methods. The research on
consistency models was outlined by Finkelstein [20]. UML is
not a formal language so often UML models are translated
into stricter notation. UML consistency analysis goes far
beyond checking syntax and semantics; it should also
encompass other areas like targeted programming
language, modelling methodology, modelled systems, and
application and implementation domains.

Many articles which describe UML consistency rules
note some sequences of UML diagrams in which these
rules work. In Table 1. these sequences are shown in
regular expressions, where: P - package diagram, C - class
diagram, O - object diagram, U - use case diagram, A -
activity diagram, S - state machine diagram, Q - sequence
diagram, I - communication diagram. These sequences
show that in some IT projects consistency modelling of the
software architecture is driving on the consistency rules. In
our article we propose next UML diagrams sequence
written as regular expressions: UA(C+S+U). First UML use
case diagram is the business use case in which we show
interaction between actors, then use case realization
diagram is placed (activity diagram), and at the end three
orthogonal UML diagrams are showed - class, state-
machine, and system use case diagrams. The last UML use
case diagram is the system use case diagram, in which we
show interaction between the actor and the IT system.

Table 1. Sequence of UML diagram driven consistency rules

Author, Year [references] Sequence of
diagrams

Number of
consistency rules

Egyed, 2000 [13] P(CQ+CO+CS) 50

Sapna, 2007 [21] C(S+U(A+Q)) 18

Ibrahim, 2012 [16] UQC 8

Ha, 2008 [9] O(Q+A+I) 7

Chanda, 2009 [22] UAC 4

Shinkawa, 2008 [15] UAQS 4

Hausmann, 2002 [23] UAO 3

We believe that the use case realization model (based
on the business use case diagram – the second diagram in
our proposition) should be created firstly and should be
already in a consistent form to define logical supporting
rules for creation of the next models. Such approach should
prevent cumbersome and continuous searching for
inconsistencies during the model construction.

The Sufficient Criteria for Consistent Activity Diagram
In the majority of projects using UML diagrams [2, 3],

use case diagrams are developed at the beginning of
software development to describe the main functions of the
software-based system. Then class diagrams are created to
show the structure of the system, and state machine
diagrams are built to show the behaviour of system’s
elements ([4, 5]). Subsequently activity or sequence
diagram can be used in order to verify consistency of other
diagrams. These diagrams are also using visualizing
scenarios i.e. – use case realization diagrams.

PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 91 NR 2/2015 33

Activity diagram enables to associate activities with
objects (instantiate classes), and use-cases ([4, 5, 24]). It
can be noticed that Use Case, Class and State Machine
diagrams are orthogonal (Fig. 1), and enable to derive use
case realization diagram [25]. A model, which adequately
integrates these diagrams, thus enables to keep the
consistency and the sufficient completeness of the whole
system because these three diagrams do not have common
elements. One can interpret the operation of the class
(dimension of the structure), the state in State-Chart
(dimension of the behaviour), and use case (dimension of
the functionality) as a single element of the integrated
model. Such integrated model (diagram) enables to
construct the completely described three-diagram model.
We define sufficient completeness as comprising necessary
elements (listed above) and at least one element that
integrates all these three dimensions of the software
architecture.

Fig.1. Three dimensions of the software architecture view

Activity diagram based on the UML standard do not
satisfy conditions mentioned above. If we add to the activity
diagram the structure elements (e.g. instances of class)
then we get the new UML diagram with the behaviour,
structure, and functional aspects of the system. Therefore
such activity diagram gives us a chance to develop
sufficiently consistent diagrams.

Besides activity diagram must have all flow paths
connected. It means that all flows within an activity diagram
can be performed. Activity diagram may be treated as the
directed graph with connected vertices. Such graph is said
to be connected if every pair of vertices in the graph is
connected.

Considering the criteria mentioned above, we define
sufficient criteria for consistent Activity Diagram in the
following conditions:
 the Activity Diagram is a connected graph;
 the Activity Diagram describes the structure aspect of

system;
 the Activity Diagram describes the behaviour aspect of

system;
 sufficiently consistent activity diagram enables to create

subsequent class and state machine diagrams;
 all elements of the Activity Diagram must be mapped

onto generated class and state machine diagrams.
The new Functional-Structure-Behaviour UML Diagram

fulfils all above conditions.

Function-Structure-Behaviour UML Diagram
The FSB UML Diagram, based on an activity UML

diagram, enables to build a model integrating the three
dimensions of software: functional, structural and
behavioural. In Fig. 2. there is an example of a routine task

in an office modelled with FSB UML diagram. It shows that
complete and consistent class, state machine and use case
UML diagrams could be derived from the sufficiently
consistent FSB UML diagram.

The header of the FSB diagram describes the objects
and the first column depicts the Actors. In following columns
the activities are presented, each one is performed by an
appropriate actor. There are several activities defined:
Creating, Checking, Archiving, Approving and Other. These
activities have the incoming and outgoing instances of the
classes. Fig. 2. presents a request of a service from an
office. A Customer fills a written request (Creating request),
then Clerk checks this request (Checking request). After
this checking, the Clerk looks into it (Creating opinion). The
Supervisor accepts the request (Approving opinion and
request) and Clerk archives his decision (Archiving request
and opinion). Then the Clerk prepares the reply (Creating
reply), the Supervisor accepts it (Approving reply) and, at
the end, the Customer receives it (Receiving reply).

In Fig. 2. the mappings between FSB UML model and
UML diagrams are also shown. The FSB UML model is in
simple and unambiguous relationships with class diagram
(structure), state diagram (behaviour), and use case
diagram (functionality) based on consistency rules.

Each element in the header of the FSB UML model
corresponds to only one object, which is an instance of a
proper class from the class diagram. The associations
between objects are derived from the edges of horizontal
object flow. Moreover, each FSB object has simple and
unambiguous state diagram. Each FSB object with its state
corresponds to only one state in the state diagram.
Transitions in this State Chart are derived from FSB activity
diagram with horizontal object flows between FSB objects.
In similar way the FSB activities can be mapped onto use
case diagram.

StateMachine Diagram

UseCase Diagram

Class Diagram

FSB UML Diagram
Partition C (Reply)Partition B (Request)Partition A (Opinion)

C
us

to
m

er
Pa

rt
iti

on
 2

 (C
le

rk
)

Pa
rt

iti
on

 1
 (S

up
er

vi
so

r)

1. Creating Request

2. Checking
Request

3. Creating
Opinion

Class B
(Request)

Class A
(Opinion)

:Class B (Request)
[Creating]

:Class B
(Request)
[Checking]

:Class A
(Opinion)
[Creating]

Class C
(Reply)

6. Approving
Request

4. Approving
Opinion

5. Archiving
Opinion

7. Archiving
Request

:Class A
(Opinion)
[Approving]

:Class B
(Request)
[Approving]

8.
Creating

Reply

9. Approving Reply

10.
Sending

Reply

:Class C
(Reply)

[Creating]

Receiving Reply

:Class C
(Reply)

[Approving]

:Class C (Reply)
[Sending]

Start Final

Initial
C.SM1

(Creating)

C.SM2
(Approving)

C.SM3
(Sending)

Final

Initial

B.SM1
(Checking)

B.SM2
(Approving)

Final

Initial

A.SM1
(Creating)

A.SM2
(Approving)

Final

Clerk

Supervisor

UC2. Creatng
opinion

UC1. Checking
request

UC3. Approving
case

UC5. Approving
reply

UC4. Creating
reply

UC6. Sending
reply

StateMachine DiagramStateMachine Diagram

Fig.2. Three dimensions of the software architecture view

A few FSB activities are realized with one use case, and

each use case is associated with an Actor in the Use Case
diagram. For sake of the readability of Fig. 2, not all
dependencies between diagrams are set as visible.

The FSB UML diagram was presented in Object
Pseudo-Code in Fig. 3.

Use-Case
diagram

Class diagram

State
machine
diagram

34 PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 91 NR 2/2015

CLASS fsbDiagram
ATTRIBUTES:
 actors: List<Actor> //functional dimension
 objects: List<Object> //structure dimension
 nodes: List<ControlNodes> //behaviour dimension
 activities: List<Activity> //behav. & functional dim.
 instances: List<Instances> // structure dimension
 controlflows: List<ControlFlow> // behaviour dimension
 objectflows: List<ObjectFlow> // structure. dimension
METHODS:
 verifyConnectivity(FSBModel) RETURN result
 checkConsistency(FSBModel) RETURN result
 checkCompleteness(FSBModel) RETURN result
 createCLDiagram(FSBModel, CLDiagram) RETURN result
 createSMDiagram(FSBModel, SMDiagram) RETURN result
 createUCDiagram(FSBModel, UCDiagram) RETURN result

Fig.3. Object Pseudo-Code of the FSB UML diagram
Methods showed in the class fsbDiagram are described

in the next sections.

Sufficient Completeness of the FSB UML Diagram
We described in Section 3 the sufficient criteria for the

consistency of modelling. Amongst other criteria our FSB
UML diagram must describe the function, structure and
behaviour aspects of the system. It means that FSB UML
diagram contains the elements, which enable to describe
function, structure and behaviour. This property we call the
sufficient completeness.
METHOD checkCompleteness(fsbDiagram)
 IF fsbDiagram has no start OR has no stop THEN
 RETURN false
 END IF
 IF fsbDiagram has no activity OR has no controlflow THEN
 RETURN false
 END IF
 IF fsbDiagram has no instance OR has no objectflow THEN
 RETURN false
 END IF
 IF fsbDiagram has no object OR has no actor THEN
 RETURN false
 END IF
 RETURN true
Fig. 4. Object Pseudo-Code of the completeness checking of the
FSB UML diagram

In Fig. 4. the simplified completeness checking method
of FSB UML Model is presented. The dimension of
functionality describes Actors, and Activities. Objects,
Instances and ObjectFlow with Activities represent the
dimension of structure, and the dimension of behaviour
contains ControlFlow and Activities.

The common elements of the three dimensions are
Activities, what could be used to integrate the three
dimensions of software architecture in this diagram. Other
elements of the FSB UML model fully describe the three
dimensions therefore the FSB UML diagram is sufficiently
complete.

Sufficient Consistency of the FSB UML Diagram
Other sufficient criteria presented in Section 3 for

consistency were related with connectivity of our FSB UML
diagram. If we assume that all nodes of the FSB UML
diagram are vertices of the graph then if the graph is
connected then the FSB UML diagram is also connected. In
Fig. 5 the Depth-first search (DFS) algorithm for searching
graph paths is shown. The original algorithm was extended
with eliminating duplicated paths, but with vertex and edges
covering. This algorithm is recursive. If there is lacking start
or end node or the graph is not connected.

METHOD verifyConnectivity(fsbDiagram)
 IF current vertex in scenario is the last vertex THEN
 Add the main flow to scenarios list
 RETURN 0
 END IF
 Add current vertex to the unique vertices list

 Search for next vertex connected with current vertex
 IF no new next vertex THEN RETURN 0 END IF
 FOR founded vertices
 Push founded vertex to the scenario
 CALL verifyConnectivity METHOD WITH
 founded vertex
 IF result no 0 THEN RETURN result END IF
 Pop founded vertex from the scenario
 END FOR
 RETURN 0

Fig. 5. Object Pseudo-Code of the sufficient consistency of the FSB
UML diagram

Our criterion of the connectivity is similar to the
proposition of Jurack [14]. In his method the consistency of
the activity diagram was validated by checking whether all
flow paths could be applicable. This condition is based on
the graph transformation.

The latter sufficient criteria for consistency showed in
Section 3 was related to mapping all elements of the activity
diagram onto subsequently generated class, use case and
state machine diagrams. Because inconsistencies arise
between elements belonging to several models therefore
the best method to avoid these inconsistencies is to create
the subsequent diagrams based on the one consistent
diagram. This property implies that the corresponding UML
models (use case diagram, state machine diagram, and
class diagram) are consistent too. Any change in the
Activity element is visible in all dimensions of the FSB
activity model. The changes of other elements of the FSB
UML diagram do not influence each other. Below we
proposed adequate methods in the object pseudo-code.

METHOD createSMDiagram(smDiagram)
FOR founded instance

 Create UML State WITH Name of instance state
 Relate UML State WITH Class

 Relate UML State WITH other UML States Linked by
 Activities

 END FOR
 RETURN

Fig. 6. Object Pseudo-Code of the method to create state machine
diagram from the FSB UML diagram

METHOD createCLDiagram(CLDiagram clDiagram)
 FOR founded UML Instance
 Create UML Class WITH Name of instance
 Relate UML Class WITH founded instance
 END FOR
 RETURN

Fig. 7. Object Pseudo-Code of the method to create class diagram
from the FSB UML diagram

METHOD createUCDiagram(ucDiagram)
 FOR founded UML horizontalPartition
 Create UML Actor WITH Name of horizontalPartition
 Relate UML Actor WITH horizontalPartition
 END FOR
 FOR founded activity
 Create UML UseCase WITH Name of activity
 Relate UML UseCase WITH
 horizontalPartition contains founded activity
 END FOR
 RETURN

Fig. 8. Object Pseudo-Code of the method to create use case
diagram from the FSB UML diagram

PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 91 NR 2/2015 35

Conclusions
In this paper we have presented a new Function-

Structure-Behaviour UML diagram which has several
advantages. Our diagram enables to keep the sufficient
consistency and completeness of the application model.
The FSB UML diagram allows to automatically generate
complete workflow applications driven with consistency
rules with no need for any “manual” programming.
Moreover we have shown that the UML diagrams mapped
from the FSB UML model are complete and consistent.

The practical usage of FSB UML diagram may be
questioned. The FSB UML diagram presented in Fig. 2,
prepared for six use cases, was not “easy to understand
and read”. In industrial projects the number of use cases is
significantly greater but usually complex models are
decomposed into sub-models. Such approach is commonly
used for UML models and also can be applied for FSB UML
diagram. FSB UML diagrams have been already
successfully applied in several industrial realizations of IT
systems in Poland.

In the design process UML models are usually refined
and to keep the consistency among them, many
complicated techniques are used e.g. [24, 25]. Alternatively
it might be considered to refine only the FSB UML diagram
and then consecutively map it onto the consistent UML
diagrams.

The next step in our work is to develop the tool to
automatically generate complete workflow applications
based on FSB UML diagram.

REFERENCES
[1] Unified Modeling Language: Superstructure, version 2.4.1,

formal/2011-08-05,
http://www.omg.org/spec/UML/2.4.1/Infrastructure

[2] Choi, H., Yeom, K.: An Approach to Software Architecture
Evaluation with the 4+1 View Model of Architecture. In: Ninth
Asia-Pacific Software Engineering Conference, pp. 286—293.
IEEE Computer Society, 2002.

[3] Kennaley, M.: The 3+1 Views of Architecture (in 3D): An
Amplification of the 4+1 Viewpoint Framework. In Seventh
Working IEEE/IFIP Conference, pp. 299—302. IEEE Computer
Society, 2008.

[4] Issa, A., Abu Rub, F.A.: Performing Early Feasibility Studies of
Software Development Projects Using Business Process
Models, Proceedings of the World Congress on Engineering
2007 Vol I WCE 2007, July 2 - 4, 2007, London, U.K.

[5] Dijkman, R.M., Joosten, S.M.: An Algorithm to Derive Use
Case Diagrams from Business Process Models, 6th
International Conference on Software Engineering and
Applications (SEA), Anaheim, CA, USA, Acta Press, pp. 679-
684, 2002.

[6] B luemke , I . , N iepos tyn , S .J ., From Three Dimensional
Document Circulation Diagram into UML Diagrams, w:
Emerging Trends in Computing, Informatics, Systems
Sciences, and Engineering / Sobh Tarek, Elleithy Khaled (red.
), Lecture Notes in Electrical Engineering, vol. 151, 2013,
Springer, ISBN 978-1-4614-3557-0, ss. 319-329.

[7] N iepos tyn , S .J . , B luemke I ., The Function-Behaviour-
Structure Diagram for Modelling Workflow of Information
Systems, w: Advanced Information Systems Engineering Work-
shops / Bajec Marko, Eder Johann (red.), Lecture Notes in
Business Information Processing, vol. 112, 2012, Springer,
ISBN 978-3-642-31068-3, ss. 425-439

[8] Spanoudakis, G., Zisman, A.: Inconsistency management in
software engineering: Survey and open research issues. In S.
K. Chang (Ed.), Handbook of software engineering and
knowledge engineering, 1, 329-380. London: World Scientific
Publishing Co, 1999.

[9] Ha, I., Kang, B.: Cross Checking Rules to Improve Consistency
between UML Static Diagram and Dynamic Diagram. In: Fyfe,

C., Kim, D., Lee, S.Y., Yin, H. (eds.) IDEAL 2008. LNCS, vol.
5326, pp. 436–443. Springer, Heidelberg (2008)

[10] Paige, R.F., Brooke, P.J.: Metamodel-Based Model
Conformance and Multi-View Consistency Checking, ACM
Transactions on Software Engineering and Methodology,
Volume 16 Issue 3, July 2007

[11] Shuzhen, Y., Shatz, S.M.: Consistency Checking of UML
Dynamic Models Based on Petri Net Techniques. In: Gelbukh,
A., Guerra, S.S. (eds.) Proc. of the 15th International
Conference on Computing (CIC 2006), pp. 289–297. IEEE
Computer Society, Washington (2006)

[12] Wang, Z., He, H., Chen, L., Zhang, Y.: Ontology based
semantics checking for UML activity model. Information
Technology Journal. 11, 3, 301-306

[13] Egyed, A.F.: Heterogeneous View Integration and its
Automation, PhD diss., University of Southern California, 2000

[14] Jurack, S., Lambers, L., Mehner, K., Taentzer, G.: Sufficient
Criteria for Consistent Behavior Modeling with Refined Activity
Diagrams, Model Driven Engineering Languages and Systems,
Lecture Notes in Computer Science Volume 5301, 2008, pp
341-355

[15] Shinkawa, Y.: Inter-Model Consistency in UML Based on CPN
Formalism, in: 13th Asia Pacific Software Engineering
Conference (APSEC '06) 2006, pp. 414-418

[16] Ibrahim, N., Ibrahim, R., Saringat, M. Z., Mansor, D., Herawan,
T.: Definition of Consistency Rules between UML Use Case
and Activity Diagram, in T.h. Kim, H. Adeli, R. J. Robles & M.
Balitanas (Eds.), Ubiquitous Computing and Multimedia
Applications, ed., Communication of Computer and Information
Sciences vol. 151, Springer Berlin / Heidelberg, Daejeon,
Korea, 2011

[17] Goel, A., Rugaber, S., Vattam, S.: Structure, behavior &
function of complex systems: The SBF modeling language.
International Journal of AI in Engineering Design, Analysis and
Manufacturing, 23, 23–35 (2009)

[18] Gero, J.S., Kannengiesser, N.: The Situated Function-
Behavior-Structure Framework, Design Studies, vol. 25, no. 4,
2004, pp. 373–391.

[19] Truyen, F.: The Fast Guide to Model Driven Architecture, The
Basics of Model Driven Architecture, Cephas Consulting Corp,
January 2006.

[20] Finkelstein, A.C.W., Gabbay, D., Hunter, A., Kramer, J.,
Nuseibeh, B.: Inconsistency Handling in Multi-Perspective
Specifications. Transactions on Software Engineering, 20(8):
569-578, August 1994; IEEE Computer Society Press.

[21] Sapna , P . G . , Mohan ty , H ., Ensuring Consistency in
Relational Repository of UML Models, in: 10th International
Conference on Information Technology (ICIT 2007), 2007, pp.
217-222.

[22] Chanda , J . , Kan j i l a l , A . , Sengup ta , S . ,
Bha t tacharya , S ., Traceability of Requirements and
Consistency Verification of UML UseCase, Activity and Class
diagram: A Formal Approach, in: International Conference on
Methods and Models in Computer Science 2009 (ICM2CS),
2009, pp. 1-4.

[23] Hausmann , J . , Hecke l , R . , Taen tze r , G . , Detection
of Conflicting Functional Requirements in a Use Case-Driven
Approach. In: Proc. of Int. Conference on Software Engineering
2002, Orlando, USA (2002).

[24] K ruch ten , P . ,The Rational Unified Process: An Introduction,
3 ed., Boston: Addison-Wesley, 2003

[25] Usman, M. , Nadeem, A . , Ta ihoon, K im, Eunsuk ,
Cho , A Survey of Consistency Checking Techniques for UML
Models, in Advanced Software Engineering & Its Applications,
2008, IEEE

Authors: mgr inż. Stanisław Jerzy Niepostyn, Instytut Informatyki
Politechniki Warszawskiej, ul. Nowowiejska 15/19, 00-665
Warszawa, E-mail: s.niepostyn@ii.pw.edu.pl.

