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An unified approach for developing rationalized algorithms for 
hypercomplex number multiplication 

 
 

Abstract. In this article we present a common approach for the development of algorithms for calculating products of hypercomplex numbers. The 
main idea of the proposed approach is based on the representation of hypernumbers multiplying via the matrix-vector products and further creative 
decomposition of the matrix, leading to the reduction of arithmetical complexity of calculations. The proposed approach allows the construction of 
sufficiently well algorithms for hypernumbers multiplication with reduced computational complexity. If the schoolbook method requires N2 real 
multiplications and N(N-1) real additions, the proposed approach allows to develop algorithms, which take only [N(N-1)/2]+2 real multiplications and 
3Nlog2N+[N(N-3)+4]/2 real additions. 
 
Streszczenie. W artykule zostało przedstawione uogólnione podejście do syntezy algorytmów wyznaczania iloczynów liczb hiperzespolonych. 
Główna idea proponowanego podejścia polega na reprezentacji operacji mnożenia liczb hiperzespolonych w formie iloczynu wektorowo-
macierzowego i dalszej możliwości kreatywnej dekompozycji czynnika macierzowego prowadzącej do redukcji złożoności obliczeniowej. 
Proponowane podejście pozwala zbudować algorytmy wyróżniające się w porównaniu do metody naiwnej zredukowaną złożonością obliczeniową. 
Jeśli metoda naiwna wymaga wykonania N2 mnożeń oraz N(N-1) dodawań liczb rzeczywistych to proponowane podejście pozwala syntetyzować 
algorytmy wymagające tylko [N(N-1)/2]+2 mnożeń oraz 3Nlog2N+[N(N-3)+4]/2 dodawań. (Uogólnione podejście do konstruowania 
zracjonalizowanych algorytmów mnożenia liczb hiperzespolonych – tytuł polski artykułu).  
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Introduction 
 In recent years the hypercomplex numbers [1]  
(hypernumbers) play an important role during the realization 
of several tasks of data processing in various fields of 
science and technology including electrodynamics [2], 
digital signal and image processing [3-4], computer 
graphics and machine vision [5, 6, 7], telecommunication [8] 
and  public key cryptography [9]. Among other arithmetical 
operations in the hypercomplex algebras, multiplication is 
the most time-consuming one. The reason for this is, 
because the addition of two N -dimensional hypernumbers 
requires only N  real additions, whereas the multiplication 

of these hypernumbers already requires )1( NN real 

additions and 2N  real multiplications. It is easy to see that 
the increase of dimension of hypernumber increases the 
computational complexity of its multiplication. This in turn 
leads to an increase in the computation time. Therefore, the 
reduction of the computational complexity of the 
multiplication of hypercomplex numbers is an important 
scientific and engineering problem. Efficient algorithmic 
solutions for the multiplication of hypercomplex numbers 
already exist [10, 11]. However, the tricks used to obtain 
them were different in each case. In this paper, we describe 
a unified approach to the development of such algorithms. 
  

Formulation of the problem 
A hypercomplex number is defined as follows [1] 
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where 0s  and 1,...,1},{  Nisi  are real numbers and }{ ie  

1,...,1  Ni  are imaginary units, N  – is dimension of 
hyper-complex number.  
 Suppose we need to compute the product of two 
hypercomplex numbers. The following notations are used: 
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where }{ ia , }{ ib , }{ ic , 1,...,0  Ni  are real coefficients of 

the hypernumbers A , B  and, C  respectively. 
 We can write the product of two hypercomplex number 
briefly as a matrix–vector multiplication [12]: 
 

(2)   11   NNN ABC  

where   


  ],...,,[ 1101 NN aaaA , 
  ],...,,[ 1101 NN cccC , 

and NB  - is the matrix (consisting of the elements }{ ib ) 

that establishes one-to-one correspondence between the 
vector 1NA and the vector 1NC . The direct multiplication of 

the vector–matrix product in Eq. (2) requires N2 real 
multiplications and N(N-1) additions. Nevertheless, we can 
offer a simple and fairly universal technique for the 
synthesis of the hypernumber multiplication algorithms 
which have lower computational complexity. 

 

The main idea 
 The idea of the proposed approach is based on the 
possibility of efficient decomposition of the matrix NB , 

which would lead to a reduction in the number of 
calculations required. However, as a rule, the initial matrix 
in its original form cannot be effectively decomposed. In this 
case, the matrix must be previously modified, but after 
modification the result has to be converted, so that it 
possesses a block-diagonal symmetry is adequate to the 
product of an unmodified matrix by a vector. It is necessary 
to say that the matrix NB  contains both positive and 

negative elements. If we do not take into account the signs, 
the matrix would have a structure that possesses a block-
diagonal symmetry and then could be efficiently factorized. 
If this property does not hold once, then the necessary 
columns and/or rows of the matrix need first to be 
permuted. It should be remembered that when we permute 
columns, then it is necessary to permute the elements of a 
vector 1NX  the same way. If we permute rows of the 

matrix, then it is necessary to permute the elements of the 
vector 1NY in the same way. This is to ensure that the 

result of the calculation is correct. Thus, our task is to 

modify the matrix NB  so that the resulting matrix NB
~

 has 

the desired, block-structural properties. 
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 Hence the primary generalized computational procedure 
for the multiplication of hypernumbers would look like this: 

 

(3)  11

~
  NNNNNNN XPEBEPY


 

or like this: 

(4)  11

~
  NNNNNNN XEPBPEY


, 

where 


  ],...,,[ 1101 NN aaaX , 
  ],...,,[ 1101 NN cccY , 

NP


 and NP


 are columns’ and rows’ permutation matrices, 

NE


 and NE


 are columns’ and rows’ sign-change matrices. 

 Data flow diagrams which illustrate the algorithmic 
structures of computational processes, described by 
procedures (3) and (4), are shown in Figure 1 and Figure 2. 
 Straight lines in the figures denote the operations of 
data transfer. In turn, the rectangles indicate the matrix-
vector multiplications by a matrix inscribed inside a 
rectangle. The circles in these figures show the operation of 
multiplication by a real number or a variable inscribed inside 
the circle. In this paper, the data flow diagrams are oriented 
from left to right. We use the usual lines without arrows on 
purpose, so as not to clutter the picture. 
 

 
 

Fig.1. The data flow diagram representing the process of 
calculating hypernumber product in accordance with the procedure 
(3). 

 
 

Fig.2. The data flow diagram representing the process of 
calculating hypernumber product in accordance with the procedure 
(4). 
 

It must be emphasized that the presence or absence of 

matrices NP


 and NP


, in the procedures (3) and (4), 

depends on the need of the original matrix rows/columns 

permutation. The presence or absence of matrices NE


 and 

NE


 in these procedures depends on the need of change of 

signs of rows/columns elements in the original matrix. That 
is why these matrices (or their elements) are shown in the 
figures by dashed lines. 
 So, our task is to find such a decomposition of the 

matrix NB
~

, which will reduce the computational complexity 

of the multiplication of this matrix by a vector. As to the 
specific ways of decomposition of this matrix, they may be 
different. Nevertheless, we can offer a unified trick for the 
construction of the fast algorithms for multiplication of the 
traditional hypernumbers, such as quaternions (N=4), 
octonions (N=8), sedenions (N=16), trigintaduonions 
(N=32), sexagintaquattuornions (N=64), centumduodetri-
gintanions (N=128) and ducentiquinquagintasexions 
(N=256). 
  

The unified computation procedure for the low 
complexity hypercomplex numbers multiplication 
 Let us multiply the first row of NB  by (−1). (We can 

easily see that this transformation leads to the minimization 
of the computational complexity of the final algorithm in the 
future.) This transformation is done in order to present a 
matrix, modified in this manner, as an algebraic sum of the 
block-symmetric Toeplitz-type matrix and some sparse 
matrix, i.e. matrix containing only small number of nonzero 

elements. Then, a modified version NB
~

 of the matrix NB  

can be represented as the sum of a symmetric Toeplitz 

matrix NB


 and another matrix NB


 which has many zero 

elements: 
 

(5)   NNN BBB



~

. 
 

Then we can write 
 

(6)   111   NNNNN XBXBY


 
 

 The Toeplitz-type matrix NB


 is shift-structured and 

there exists a number of algorithms for the fast matrix–
vector multiplication. For instance, the matrix can be 
diagonalized using the Fast Hadamard transform (FHT) 
and, matrix-vector products can be computed efficiently. 
Unfortunately, the computational complexity of the product 

1NNXB


 cannot be reduced and this product is calculated 

directly, without any tricks. But, since the matrix NB


is 

sparse, the number of real multiplications is fairly small. 
Clearly, the smaller the number of negative elements in the 

matrix NB
~

, the smaller the real multiplications required for 

computing the product 1NNXB


.  

 It must be emphasized that the number of non-zero 

elements in the matrix NB


 depends on the number of the 

negative elements in the matrix NB . To minimize the 

number of the negative elements in the matrix NB
~

 it is 

necessary to multiply some columns and/or rows of the 
matrix NB  by (-1). (In our case, it is multiplied by (-1) only 

the first row of the matrix NB
~

, as already noted). 

 In view of the above arguments, the unified 
computational procedure that describes rationalized 
algorithm for hypercomplex numbers multiplication will look 
as follows: 
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N diag E  - is a diagonal matrix, obtained from 

an identity matrix by changing the sign of its first element, 

NM1  - is a NM   matrix of ones (a matrix where every 

element is equal to one), NI - is an identity NN   matrix, 

signs „ ” and „ ” – denote tensor product and a direct 

sum of two matrices, respectively [13], and NH  - is  NN   
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Hadamard matrix [14]. It must be emphasized that the fast 
calculation of the Hadamard matrix-vector product requires 
no multiplications of the real numbers. 
 The elements }{ is  of the matrix N2D  can be calculated 

using the following matrix-vector procedure: 
 

(8)  NNN N
BHS

1
1  , where 

  ],...,,[ 1101 NN sssS  

 Fig. 3 shows a data flow diagram representation of the 
rationalized algorithm for the computation of the two N-
order hypercomplex numbers product and Fig. 4 shows a 
data flow diagram of the process for calculation of the 
matrix N2D elements. In Fig. 3 points where lines converge 

denote summation and a dotted line indicates the sign-
change operation.  
  An examination of Fig. 3 and Fig. 4 shows that the 
algorithm also contains the multiplication by numbers, which 
are different powers of the two. These operations are 
reduced to the ordinary shifts to the left (or right) on a 
number of positions. Because of the ease of 
implementation, these operations are usually not taken into 
account when assessing the computational complexity. 
 

 
 

Fig.3. Data flow diagram for the unified rationalized hypernumber 
multiplication procedure (7).  
 

 
Fig.4. The data flow diagram describing the process of calculating 
elements of the matrix 1NS  in accordance with the procedure (8) 

 

Discussion of computational complexity 
 The described approach to the computation of the 
hypercomplex number product requires 2]2)1([ NN  

multiplications and 2]4)3([log3 2  NNNN  additions 

of real numbers. Compared to the schoolbook way of 
computing, it gives more than 50% reduction in the 
multiplicative complexity. Table 1 and Table 2 show the 
numbers of multiplications and additions of real numbers for 
the two compared methods: for the schoolbook method in 
accordance with the formula (1) and for the proposed 
approach realization in accordance with the procedure (7). 
In these tables )(O1  , )(O2   - are the amounts of 

multiplications in the naïve and proposed method, 
respectively, )(O1  , )(O2   - are amounts of additions in 

the naïve and proposed method, respectively, 1O , 2O  - 

are the values of arithmetical complexities for the naïve 
method and proposed procedure, respectively. We 
introduce the concept of computational gains in order to be 
able to evaluate the merits of the solutions discussed. 
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Table 3 shows the values of “multiplicative gain” ( )(1 K ), 

“additive gain” ( )(1 K ) and “full computational gain” ( 1K ) 

respectively. 

Table 1. Estimates of the hypernumbers multiplication multiplicative 
complexity for the direct method and proposed approach  

No Number type O1(×) O2(×) 
1 quaternions 16 8 
2 octonions 64 30 
3 sedenions 256 122 
4 trigintadounions 1024 498 
5 sexagintaquattuornions 4096 2018 
6 centumduodetrigintanions 16384 8130 
7 ducentiquinquagintasexions 65536 32642 

 

Table 2. Estimates of the hypernumbers multiplication additive 
complexity for the direct method and proposed approach  

No Number type O1(+) O2(+) 
1 quaternions 12 28 
2 octonions 56 94 
3 sedenions 240 298 
4 trigintadounions 992 946 
5 sexagintaquattuornions 4032 3106 
6 centumduodetrigintanions 16256 10690 
7 ducentiquinquagintasexions 65280 38529 

 

Table 3. Estimates of the full computational complexity of 
hypernumbers multiplication for the direct method and proposed 
approach 

No Number type O1 O2 
1 quaternions 28 36 
2 octonions 120 124 
3 sedenions 496 420 
4 trigintadounions 2016 1444 
5 sexagintaquattuornions 8128 5124 
6 centumduodetrigintanions 32640 18820 
7 ducentiquinquagintasexions 130816 71171 

 

Table 4. Estimates of the multiplicative, additive and full 
computational gain values for the hypernumbers multiplication 
operation in the direct method and proposed approach  

No Number type K1(×) K1(+) K1 
1 quaternions 2 0,43 0,8 
2 octonions 2,13 0,6 0,96 
3 sedenions 2,09 0,81 1,18 
4 trigintadounions 2,05 1,04 1,4 
5 sexagintaquattuornions 2,02 1,3 1,59 
6 centumduodetrigintanions 2,02 1,52 1,73 
7 ducentiquinquagintasexions 2,01 1,7 1,84 

  

As can be seen, the developed approach has a lower 
multiplicative complexity. It should be noted that, in some 
applications, the matrix elements are constants [14]. In this 
case, the elements of diagonal matrix N2D  can be 

calculated and stored in the memory of the computing unit 
in advance. Then, the number of additions in the 
implementation of the proposed procedure is even more 
reduced. As a result, the number of multiplications is 
reduced by more than half, compared to the naive method 
of the multiplication of the hypernumbers. The number of 
additions for the small size hypernumbers is slightly larger 
than in the naive method, but for the larger sizes it is almost 
twice less. In this case, the number of real additions is 

2]4)3([log2 2  NNNN . 
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0  - be constant. This 

means that }{ 0b  and }{ ib  - are the real constant numbers. 

For this case )(O   and )(O   are the values of “additive 

complexity” and “full arithmetical complexity” of 
hypernumbers multiplication operation, respectively. Let 

also 
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O

O
K  be the values of 

“additive gain” and “full computation gain” (for this case), 
respectively. Table 5 and Table 6 show the changes of 
discussed parameters for the case, when one of the 
multiplied hypernumbers is constant. 
 

Table 5. Estimates of the additive complexity of hypernumbers 
multiplication when one of the multiplied hypernumbers is constant  

No Number type O(+) O(Σ) 
1 quaternions 20 28 
2 octonions 70 100 
3 sedenions 234 356 
4 trigintadounions 786 1284 
5 sexagintaquattuornions 2740 4758 
6 centumduodetrigintanions 9794 17924 
7 ducentiquinquagintasexions 36482 69124 

 

Table 6. Estimates of “additive gain” and “full computation gain” for 
proposed hypernumbers multiplication method when one of the 
multiplied hypernumbers is constant 

No Number type K2(+) K2 
1 quaternions 0,6 1 
2 octonions 0,8 1,2 
3 sedenions 1,03 1,39 
4 trigintadounions 1,26 1,57 
5 sexagintaquattuornions 1,47 1,71 
6 centumduodetrigintanions 1,66 1,82 
7 ducentiquinquagintasexions 1,78 1,89 

 
Concluding remarks 
 We presented a unified approach to the development of 
the computationally effective algorithms for calculating the 
product of two hypernumbers. The use of such algorithms 
allows the reduction of the computational complexity of 
multiplications of hypernumbers, thus, reducing hardware 
complexity and leading to an effective architecture suitable 
for VLSI implementation. Additionally, we note that the total 
number of arithmetic operations in such algorithms is less 
than the total number of operations in the compared naïve 
algorithms. Therefore, the algorithms obtained using the 
proposed approach are better than the naive algorithms, 
even in terms of their software implementation on a general 
purpose computer. In conclusion, it should be noted that the 
proposed approach allows the construction of sufficiently 
well algorithms for the multiplication of hypernumbers with 
reduced computational complexity. In our previous work 
[15-17], we have applied the unified approach proposed 
here for the synthesis of fast algorithms for the 
multiplication of quaternions, octonions and sedenions. 
However, if the specific properties of the matrix are used, 
even more interesting solutions may be found [18-19]. We 
will try to develop the ideas raised here in our future 
publications, as far as possible. 
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