
36 PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 91 NR 2/2015

Aleksandr CARIOW, Galina CARIOWA

West Pomeranian University of Technology, Szczecin

doi:10.15199/48.2015.02.09

An unified approach for developing rationalized algorithms for
hypercomplex number multiplication

Abstract. In this article we present a common approach for the development of algorithms for calculating products of hypercomplex numbers. The
main idea of the proposed approach is based on the representation of hypernumbers multiplying via the matrix-vector products and further creative
decomposition of the matrix, leading to the reduction of arithmetical complexity of calculations. The proposed approach allows the construction of
sufficiently well algorithms for hypernumbers multiplication with reduced computational complexity. If the schoolbook method requires N2 real
multiplications and N(N-1) real additions, the proposed approach allows to develop algorithms, which take only [N(N-1)/2]+2 real multiplications and
3Nlog2N+[N(N-3)+4]/2 real additions.

Streszczenie. W artykule zostało przedstawione uogólnione podejście do syntezy algorytmów wyznaczania iloczynów liczb hiperzespolonych.
Główna idea proponowanego podejścia polega na reprezentacji operacji mnożenia liczb hiperzespolonych w formie iloczynu wektorowo-
macierzowego i dalszej możliwości kreatywnej dekompozycji czynnika macierzowego prowadzącej do redukcji złożoności obliczeniowej.
Proponowane podejście pozwala zbudować algorytmy wyróżniające się w porównaniu do metody naiwnej zredukowaną złożonością obliczeniową.
Jeśli metoda naiwna wymaga wykonania N2 mnożeń oraz N(N-1) dodawań liczb rzeczywistych to proponowane podejście pozwala syntetyzować
algorytmy wymagające tylko [N(N-1)/2]+2 mnożeń oraz 3Nlog2N+[N(N-3)+4]/2 dodawań. (Uogólnione podejście do konstruowania
zracjonalizowanych algorytmów mnożenia liczb hiperzespolonych – tytuł polski artykułu).

Keywords: hypernumbers, multiplication, fast algorithms.
Słowa kluczowe: liczby hiperzespolone, operacja mnożenia, szybkie algorytmy.

Introduction
 In recent years the hypercomplex numbers [1]
(hypernumbers) play an important role during the realization
of several tasks of data processing in various fields of
science and technology including electrodynamics [2],
digital signal and image processing [3-4], computer
graphics and machine vision [5, 6, 7], telecommunication [8]
and public key cryptography [9]. Among other arithmetical
operations in the hypercomplex algebras, multiplication is
the most time-consuming one. The reason for this is,
because the addition of two N -dimensional hypernumbers
requires only N real additions, whereas the multiplication

of these hypernumbers already requires)1(NN real

additions and 2N real multiplications. It is easy to see that
the increase of dimension of hypernumber increases the
computational complexity of its multiplication. This in turn
leads to an increase in the computation time. Therefore, the
reduction of the computational complexity of the
multiplication of hypercomplex numbers is an important
scientific and engineering problem. Efficient algorithmic
solutions for the multiplication of hypercomplex numbers
already exist [10, 11]. However, the tricks used to obtain
them were different in each case. In this paper, we describe
a unified approach to the development of such algorithms.

Formulation of the problem
A hypercomplex number is defined as follows [1]

(1) i

N

l

iessS 





1

1

0 ,

where 0s and 1,...,1},{  Nisi are real numbers and }{ ie

1,...,1  Ni are imaginary units, N – is dimension of
hyper-complex number.
 Suppose we need to compute the product of two
hypercomplex numbers. The following notations are used:

i

N

l

ieaaA 





1

1

0 , i

N

l

iebbB 





1

1

0 , i

N

l

ieccABC 





1

1

0 ,

where }{ ia , }{ ib , }{ ic , 1,...,0  Ni are real coefficients of

the hypernumbers A , B and, C respectively.
 We can write the product of two hypercomplex number
briefly as a matrix–vector multiplication [12]:

(2) 11   NNN ABC

where


 ],...,,[1101 NN aaaA , 
 ],...,,[1101 NN cccC ,

and NB - is the matrix (consisting of the elements }{ ib)

that establishes one-to-one correspondence between the
vector 1NA and the vector 1NC . The direct multiplication of

the vector–matrix product in Eq. (2) requires N2 real
multiplications and N(N-1) additions. Nevertheless, we can
offer a simple and fairly universal technique for the
synthesis of the hypernumber multiplication algorithms
which have lower computational complexity.

The main idea
 The idea of the proposed approach is based on the
possibility of efficient decomposition of the matrix NB ,

which would lead to a reduction in the number of
calculations required. However, as a rule, the initial matrix
in its original form cannot be effectively decomposed. In this
case, the matrix must be previously modified, but after
modification the result has to be converted, so that it
possesses a block-diagonal symmetry is adequate to the
product of an unmodified matrix by a vector. It is necessary
to say that the matrix NB contains both positive and

negative elements. If we do not take into account the signs,
the matrix would have a structure that possesses a block-
diagonal symmetry and then could be efficiently factorized.
If this property does not hold once, then the necessary
columns and/or rows of the matrix need first to be
permuted. It should be remembered that when we permute
columns, then it is necessary to permute the elements of a
vector 1NX the same way. If we permute rows of the

matrix, then it is necessary to permute the elements of the
vector 1NY in the same way. This is to ensure that the

result of the calculation is correct. Thus, our task is to

modify the matrix NB so that the resulting matrix NB
~

 has

the desired, block-structural properties.

PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 91 NR 2/2015 37

 Hence the primary generalized computational procedure
for the multiplication of hypernumbers would look like this:

(3) 11

~
  NNNNNNN XPEBEPY



or like this:

(4) 11

~
  NNNNNNN XEPBPEY


,

where


 ],...,,[1101 NN aaaX , 
 ],...,,[1101 NN cccY ,

NP


 and NP


 are columns’ and rows’ permutation matrices,

NE


 and NE


 are columns’ and rows’ sign-change matrices.

 Data flow diagrams which illustrate the algorithmic
structures of computational processes, described by
procedures (3) and (4), are shown in Figure 1 and Figure 2.
 Straight lines in the figures denote the operations of
data transfer. In turn, the rectangles indicate the matrix-
vector multiplications by a matrix inscribed inside a
rectangle. The circles in these figures show the operation of
multiplication by a real number or a variable inscribed inside
the circle. In this paper, the data flow diagrams are oriented
from left to right. We use the usual lines without arrows on
purpose, so as not to clutter the picture.

Fig.1. The data flow diagram representing the process of
calculating hypernumber product in accordance with the procedure
(3).

Fig.2. The data flow diagram representing the process of
calculating hypernumber product in accordance with the procedure
(4).

It must be emphasized that the presence or absence of

matrices NP


 and NP


, in the procedures (3) and (4),

depends on the need of the original matrix rows/columns

permutation. The presence or absence of matrices NE


 and

NE


 in these procedures depends on the need of change of

signs of rows/columns elements in the original matrix. That
is why these matrices (or their elements) are shown in the
figures by dashed lines.
 So, our task is to find such a decomposition of the

matrix NB
~

, which will reduce the computational complexity

of the multiplication of this matrix by a vector. As to the
specific ways of decomposition of this matrix, they may be
different. Nevertheless, we can offer a unified trick for the
construction of the fast algorithms for multiplication of the
traditional hypernumbers, such as quaternions (N=4),
octonions (N=8), sedenions (N=16), trigintaduonions
(N=32), sexagintaquattuornions (N=64), centumduodetri-
gintanions (N=128) and ducentiquinquagintasexions
(N=256).

The unified computation procedure for the low
complexity hypercomplex numbers multiplication
 Let us multiply the first row of NB by (−1). (We can

easily see that this transformation leads to the minimization
of the computational complexity of the final algorithm in the
future.) This transformation is done in order to present a
matrix, modified in this manner, as an algebraic sum of the
block-symmetric Toeplitz-type matrix and some sparse
matrix, i.e. matrix containing only small number of nonzero

elements. Then, a modified version NB
~

 of the matrix NB

can be represented as the sum of a symmetric Toeplitz

matrix NB


 and another matrix NB


 which has many zero

elements:

(5) NNN BBB



~

.

Then we can write

(6) 111   NNNNN XBXBY


 The Toeplitz-type matrix NB


 is shift-structured and

there exists a number of algorithms for the fast matrix–
vector multiplication. For instance, the matrix can be
diagonalized using the Fast Hadamard transform (FHT)
and, matrix-vector products can be computed efficiently.
Unfortunately, the computational complexity of the product

1NNXB


 cannot be reduced and this product is calculated

directly, without any tricks. But, since the matrix NB


is

sparse, the number of real multiplications is fairly small.
Clearly, the smaller the number of negative elements in the

matrix NB
~

, the smaller the real multiplications required for

computing the product 1NNXB


.

 It must be emphasized that the number of non-zero

elements in the matrix NB


 depends on the number of the

negative elements in the matrix NB . To minimize the

number of the negative elements in the matrix NB
~

 it is

necessary to multiply some columns and/or rows of the
matrix NB by (-1). (In our case, it is multiplied by (-1) only

the first row of the matrix NB
~

, as already noted).

 In view of the above arguments, the unified
computational procedure that describes rationalized
algorithm for hypercomplex numbers multiplication will look
as follows:

(7) 1222221

~~
  NNNNNNNNNN XPBDHΣEY



)(122 NNN I1P   , NNN BHB


2

~
,

)2,...,2,2,,...,,(1102 

timesN

NN sssdiag D ,

NNN IHH 
~

2 , NNN I1Σ   212 ,

)1,...,1,1(
~


timesN

N diag E - is a diagonal matrix, obtained from

an identity matrix by changing the sign of its first element,

NM1 - is a NM  matrix of ones (a matrix where every

element is equal to one), NI - is an identity NN  matrix,

signs „ ” and „ ” – denote tensor product and a direct

sum of two matrices, respectively [13], and NH - is NN 

NP


NP


0


1N


1


0x

1x

1Nx

0y

1y

1Ny1N


1


0


    
NB

~

   
NP


1N


1


0


0


1N


1


0x

1x

1Nx

0y

1y

1Ny

NP


NB
~

38 PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 91 NR 2/2015

Hadamard matrix [14]. It must be emphasized that the fast
calculation of the Hadamard matrix-vector product requires
no multiplications of the real numbers.
 The elements }{ is of the matrix N2D can be calculated

using the following matrix-vector procedure:

(8) NNN N
BHS

1
1  , where 

 ],...,,[1101 NN sssS

 Fig. 3 shows a data flow diagram representation of the
rationalized algorithm for the computation of the two N-
order hypercomplex numbers product and Fig. 4 shows a
data flow diagram of the process for calculation of the
matrix N2D elements. In Fig. 3 points where lines converge

denote summation and a dotted line indicates the sign-
change operation.
 An examination of Fig. 3 and Fig. 4 shows that the
algorithm also contains the multiplication by numbers, which
are different powers of the two. These operations are
reduced to the ordinary shifts to the left (or right) on a
number of positions. Because of the ease of
implementation, these operations are usually not taken into
account when assessing the computational complexity.

Fig.3. Data flow diagram for the unified rationalized hypernumber
multiplication procedure (7).

Fig.4. The data flow diagram describing the process of calculating
elements of the matrix 1NS in accordance with the procedure (8)

Discussion of computational complexity
 The described approach to the computation of the
hypercomplex number product requires 2]2)1([NN

multiplications and 2]4)3([log3 2  NNNN additions

of real numbers. Compared to the schoolbook way of
computing, it gives more than 50% reduction in the
multiplicative complexity. Table 1 and Table 2 show the
numbers of multiplications and additions of real numbers for
the two compared methods: for the schoolbook method in
accordance with the formula (1) and for the proposed
approach realization in accordance with the procedure (7).
In these tables)(O1  ,)(O2  - are the amounts of

multiplications in the naïve and proposed method,
respectively,)(O1  ,)(O2  - are amounts of additions in

the naïve and proposed method, respectively, 1O , 2O -

are the values of arithmetical complexities for the naïve
method and proposed procedure, respectively. We
introduce the concept of computational gains in order to be
able to evaluate the merits of the solutions discussed.

)(O

)(O
)(

2

1
1 


K ,

)(

)(
)(

2

1
1 




O

O
K and

2

1
1 O

O
K .

Table 3 shows the values of “multiplicative gain” ()(1 K),

“additive gain” ()(1 K) and “full computational gain” (1K)

respectively.

Table 1. Estimates of the hypernumbers multiplication multiplicative
complexity for the direct method and proposed approach

No Number type O1(×) O2(×)
1 quaternions 16 8
2 octonions 64 30
3 sedenions 256 122
4 trigintadounions 1024 498
5 sexagintaquattuornions 4096 2018
6 centumduodetrigintanions 16384 8130
7 ducentiquinquagintasexions 65536 32642

Table 2. Estimates of the hypernumbers multiplication additive
complexity for the direct method and proposed approach

No Number type O1(+) O2(+)
1 quaternions 12 28
2 octonions 56 94
3 sedenions 240 298
4 trigintadounions 992 946
5 sexagintaquattuornions 4032 3106
6 centumduodetrigintanions 16256 10690
7 ducentiquinquagintasexions 65280 38529

Table 3. Estimates of the full computational complexity of
hypernumbers multiplication for the direct method and proposed
approach

No Number type O1 O2
1 quaternions 28 36
2 octonions 120 124
3 sedenions 496 420
4 trigintadounions 2016 1444
5 sexagintaquattuornions 8128 5124
6 centumduodetrigintanions 32640 18820
7 ducentiquinquagintasexions 130816 71171

Table 4. Estimates of the multiplicative, additive and full
computational gain values for the hypernumbers multiplication
operation in the direct method and proposed approach

No Number type K1(×) K1(+) K1
1 quaternions 2 0,43 0,8
2 octonions 2,13 0,6 0,96
3 sedenions 2,09 0,81 1,18
4 trigintadounions 2,05 1,04 1,4
5 sexagintaquattuornions 2,02 1,3 1,59
6 centumduodetrigintanions 2,02 1,52 1,73
7 ducentiquinquagintasexions 2,01 1,7 1,84

As can be seen, the developed approach has a lower
multiplicative complexity. It should be noted that, in some
applications, the matrix elements are constants [14]. In this
case, the elements of diagonal matrix N2D can be

calculated and stored in the memory of the computing unit
in advance. Then, the number of additions in the
implementation of the proposed procedure is even more
reduced. As a result, the number of multiplications is
reduced by more than half, compared to the naive method
of the multiplication of the hypernumbers. The number of
additions for the small size hypernumbers is slightly larger
than in the naive method, but for the larger sizes it is almost
twice less. In this case, the number of real additions is

2]4)3([log2 2  NNNN .

N1

N1

N1

NH

0s

1s

1Ns

0b

1b

1Nb

  









 NH NH

2

2

2

NB


0s

1s

1Ns
0x

1x

1Nx

0y

1y

1Ny

PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 91 NR 2/2015 39

 Let hypernumber i

N

l

iebbB 





1

1

0 - be constant. This

means that }{ 0b and }{ ib - are the real constant numbers.

For this case)(O  and)(O  are the values of “additive

complexity” and “full arithmetical complexity” of
hypernumbers multiplication operation, respectively. Let

also
)(

)(
)(1

2 



O

O
K and

)(
1

2 


O

O
K be the values of

“additive gain” and “full computation gain” (for this case),
respectively. Table 5 and Table 6 show the changes of
discussed parameters for the case, when one of the
multiplied hypernumbers is constant.

Table 5. Estimates of the additive complexity of hypernumbers
multiplication when one of the multiplied hypernumbers is constant

No Number type O(+) O(Σ)
1 quaternions 20 28
2 octonions 70 100
3 sedenions 234 356
4 trigintadounions 786 1284
5 sexagintaquattuornions 2740 4758
6 centumduodetrigintanions 9794 17924
7 ducentiquinquagintasexions 36482 69124

Table 6. Estimates of “additive gain” and “full computation gain” for
proposed hypernumbers multiplication method when one of the
multiplied hypernumbers is constant

No Number type K2(+) K2
1 quaternions 0,6 1
2 octonions 0,8 1,2
3 sedenions 1,03 1,39
4 trigintadounions 1,26 1,57
5 sexagintaquattuornions 1,47 1,71
6 centumduodetrigintanions 1,66 1,82
7 ducentiquinquagintasexions 1,78 1,89

Concluding remarks
 We presented a unified approach to the development of
the computationally effective algorithms for calculating the
product of two hypernumbers. The use of such algorithms
allows the reduction of the computational complexity of
multiplications of hypernumbers, thus, reducing hardware
complexity and leading to an effective architecture suitable
for VLSI implementation. Additionally, we note that the total
number of arithmetic operations in such algorithms is less
than the total number of operations in the compared naïve
algorithms. Therefore, the algorithms obtained using the
proposed approach are better than the naive algorithms,
even in terms of their software implementation on a general
purpose computer. In conclusion, it should be noted that the
proposed approach allows the construction of sufficiently
well algorithms for the multiplication of hypernumbers with
reduced computational complexity. In our previous work
[15-17], we have applied the unified approach proposed
here for the synthesis of fast algorithms for the
multiplication of quaternions, octonions and sedenions.
However, if the specific properties of the matrix are used,
even more interesting solutions may be found [18-19]. We
will try to develop the ideas raised here in our future
publications, as far as possible.

REFERENCES
[1] Kan to r , I . L . and So lodovn ikov A . S . Hypercomplex

numbers. An elementary introduction to algebras. Springer:
New York, (1989).

[2] Chanya l B . C . , B ish t P . S . and Neg i O. P. S.,
Generalized Octonion Electrodynamics, Int. J. Theor. Phys.,
49(6), (2010), 1333-1343.

[3] A l fsmann D . , Göck le r H . G . , Sangwine S . J . and
E l l T . A . Hypercomplex Algebras in Digital Signal Processing:
Benefits and Drawbacks (Tutorial). Proc. EURASIP 15th
European Signal Processing Conference (EUSIPCO 2007),
Poznań, Poland, (2007), 1322-1326.

[4] Snopek K . M. The Study of Properties of n-D Analytic
Signals in Complex and Hypercomplex Domains,
Radioengineering, (2012), vol. 21, No. 2, 29-36.

[5] B ihan , N . L . , Sangwine , S . J . Quaternion principal
component analysis of color images. In: IEEE International
Conference on Image Processing (ICIP 2003). v.1., Barcelona,
Spain, (2003). 809–812.

[6] Moxey C .E . , Sangwine S . J . , E l l T .A . , Hypercomplex
correlation techniques for vector images, IEEE Trans. Signal
Process., 2003. 51, 1941-1953

[7] Wang Hu i ; Wang X iao -Hu i ; Zhou Yue ; Yang J ie
Color Texture Segmentation Using Quaternion-Gabor Filters,
Transaction on Image Processing, 2006 IEEE International
Conference 8-11 Oct. (2006), 745 – 748.

[8] Ca lde rbank R . , Das S . , A l Dhah i r N . , D iggav i S .,
Construction And Analysis of A New Quaternionic Space-Time
Code For 4 Transmit Antennas, Commun. Inf. Syst., (2005), 5,
97-122.

[9] Ma lek ian E . , Zakero lhosse in i A . , Mashatan A .,
QTRU: Quaternionic Version of the NTRU Public-Key
Cryptosystems, Int. J. Inf. Secur., 3, 29-42, 2011

[10] Makarov O. M. An algorithm for the multiplication of two
quaternions, Zh. Vychisl. Mat. Mat. Fiz. 17(6) (1977) 1574–1575
(in Russian).

[11] D imi t rov V . S . , Cook lev T . ,V . , Donevsky B .D . , On
the multiplication of reduced biquaternions and applications,
Inform. Process. Lett. 43 (3) (1992) 161–164.

[12] Ţar iov А ., Algorytmiczne aspekty racjonalizacji obliczeń w
cyfrowym przetwarzaniu sygnałów, Wydawnictwo Uczelniane
ZUT, (2011).

[13] S teeb W. -H . , Hardy Y. , Matrix Calculus and Kronecker
Product: A Practical Approach to Linear and Multilinear Algebra,
World Scientific Publishing Company; 2 edition (2011).

[14] Ţar iov A . , Strategie racjonalizacji obliczeń przy wyznaczaniu
iloczynów macierzowo-wektorowych. Metody Informatyki
Stosowanej, n 1, (2008), 147- 158.

[15] Ţar iova G. , Ţar iov A ., Aspekty algorytmiczne redukcji
liczby bloków mnożących w układzie do obliczania iloczynu
dwóch kwaternionów, Pomiary, Automatyka, Kontrola, n 7,
(2010), 668-690.

[16] Ţar iov A . , Ţar iova G. , Aspekty algorytmiczne organizacji
układu procesorowego do mnożenia liczb Cayleya. Elektronika-
Konstrukcje, Technologie, Zastosowania, n 11, (2010), 137-140

[17] Car iow A . , Car iowa G., An algorithm for fast multiplication
of sedenions, Information Processing Letters, 113 (2013). 324–
331.

[18] Car iow A . , Car iowa G., An algorithm for multiplication of
Dirac numbers, Journal of Theoretical and Applied Computer
Science, (2013), vol. 7, no. 4, 26-34.

[19] Car iow A . , Car iowa G., An algorithm for fast multiplication
of Pauli numbers, Advances in Applied Clifford Algebras,
(2014). This article is Publisher with open access at
Springerlink.com DOI 10.1007/s00006-014-0466-0.

Authors: prof. PhD, D.Sc. Aleksandr Cariow, PhD Galina Cariowa,
Department of Computer Architectures and Telecommunications,
Faculty of Computer Sciences, West Pomeranian University of
Technology, Szczecin, ul. Żołnierska 51, 71-210 Szczecin, E-mail:
atariov@wi.zut.edu.pl, gtariova@wi.zut.edu.pl

