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Currents’ Physical Components (CPC) 
in systems with semi-periodic voltages and currents 

 

Abstract. There are situations in electrical distribution systems where voltages and currents cannot be regarded as periodic quantities. They could 
be non-periodic. Nonetheless, properties of electrical systems confine this non-periodicity of voltages and currents to a particular sub-set of non-
periodic quantities, referred to as semi-periodic quantities in this paper. The paper presents the concept of semi-periodic quantities and defines 
major functionals, such as the running active power, the running rms value, the scalar product and the running complex rms (crms) value of quasi-
harmonics, needed for describing electrical systems with such voltages and currents in power terms. A recursive approach to calculation of these 
functionals was presented as well. The paper presents fundamentals of the Currents’ Physical Components (CPC) – based power theory of systems 
with semi-periodic voltages and currents. An application of the semi-periodic concept to a load current decomposition in single-phase circuits with 
linear loads and with harmonics generating loads is presented as well. The paper presents also a concept of extrapolation of CPC into the closest 
future, which enables quasi-instantaneous generation of control signals for switching compensators.  

Streszczenie. Są takie sytuacje w systemach rozdzielczych, w których napięcia i prądy nie mogą być traktowane jako przebiegi okresowe. Mogą 
one być nieokresowe. Właściwości systemów rozdzielczych ograniczają jednak nieokresowość tych przebiegów do pewnego szczególnego 
podzbioru przebiegów nieokresowych, określago w tym artykule podzbiorem przebiegów półokresowych (semi-periodic).  Artykuł definiuje 
podstawowe funkcjonały, takie jak biegnąca moc czynna, biegnąca wartość skuteczna, biegnący iloczyn skalarny oraz zespolona wartość skuteczna 
(crms) quasi-harmonicznych, potrzebnych do opisu właściwości energetycznych w obwodach. Przedstawiona jest także metoda rekursywnego 
obliczania tych funkcjonałów. Artykuł przedstawia podstawy rozkładu prądu na składowe fizyczne w obwodach z odbiornikami liniowymi oraz z 
odbiornikami generującymi harmoniczne oraz z półokresowymi przebiegami prądu i napięcia. Przedstawiona jest też metoda ekstrapolacji 
składowych fizycznych w najbliższą przyszłość, umożliwiająca niemal momentalną generację sygnałów kontrolnych kompensatora. (Składowe 
Fizyczne Prądu w systemach z półokresowymi przebiegami prądu i napięcia). 
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“Science develops due to two mechanisms: due to 
problems it generates itself and due to problems that 
were enforced on it”. 

Ian Hacking [4] 
 
Introduction 

It looks like the power theory can eventually provide the 
answer to Steinmetz’s old question, formulated in 1892, [1]: 
why can the apparent power S in a resistive circuit with 
an electric arc be higher than the active power P? The 
answer, in the frame of the Currents’ Physical Components 
(CPC) – based power theory [5], applies to single - and 
three-phase systems on the condition that voltages and 
currents are periodic. 

There are situations in distribution systems where this 
condition is not satisfied, however. Voltages and currents of 
some loads are non-periodic. An example of such a non-
periodic voltage and current at a terminal of a three-phase 
energy pump is shown in Fig. 1. 

 
Fig. 1. Waveforms of the load current and the supply voltage of 
energy pump. 

 
Waveform non-periodicity is mainly due to power elec-

tronics devices, which provide versatile technical means for 
fast control of energy flow, disturbing waveform periodicity. 
Adjustable speed drives driven by power electronics con-

verters, are common sources of non-periodic phenomena. 
Also some loads are non-periodic by nature.  

Pulsing loads are examples of loads that draw non-
periodic currents from a supply source, such as spot 
welders, generators of beams of X-rays, or electromagnetic 
guns. These loads release energy in the form of pulses of 
current of the order of hundreds of kA and only a few 
milliseconds duration. The energy of the pulse is stored, by 
a sort of energy pump, over several periods of the supply 
voltage in a capacitor, to be released next in a short interval 
of time, and the process is repeated. An example of such 
an energy pump is shown in Fig. 2. 

 

Fig. 2. Example of energy pump for a pulsing load. 

Waveforms of the supply current and the voltage of 
such an energy pump are shown in Fig. 1. The supply 
current of the pump increases over several periods of the 
supply voltage and declines to zero when the capacitor 
voltage approaches its maximum value, so that the energy 
needed for the pulsing load is stored in the capacitor. Due 
to the voltage drop on the supply source impedance, there 
is also a variation of the pump voltage. It causes the voltage 
non-periodicity. 

Some of the most remarkable devices with non-periodic 
currents are arc furnaces in uneasy phase of melting. 
Taking into account that the power of an arc furnace could 
be in the range of hundreds MVA, non-periodic phenomena 
caused by such a furnace could be remarkable. 

The presence of non-periodic voltages and currents in 
distribution systems raises two issues. First, a cognitive 
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question occurs: how can power related phenomena be 
explained and described in a situation where the concepts 
developed for systems with periodic quantities are no longer 
valid? The second question is practical: how can loads with 
non-periodic voltages and current be compensated, and in 
particular, how should reference signals for switching com-
pensator control be generated? This paper is focused on 
the first of these two questions, namely, on describing 
power properties of loads with semi-periodic voltages and 
currents. The study is confined to single-phase systems, but 
the approach and results can be generalized easily to three-
phase systems. 

Voltages and currents in situations described above are 
non-periodic and consequently, well established definitions 
in electrical engineering such as the active power 

(1)                 
df 1

( ) ( ) cos=
T

0

P u t i t dt = U I
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 , 

the voltage and current rms values 
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as well as the complex rms (crms) value of harmonics 
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i.e., the main functionals in the CPC – based power theory, 
cannot be defined, because non-periodic quantities simply 
do not have the period T. 

To calculate powers, non-periodic quantities are some-
times approximated by periodic ones. Nonetheless, when 
powers in systems with non-periodic quantities are not 
defined, the error of such an approximation cannot even be 
evaluated.  

Non-periodic voltages and currents in electrical power 
systems usually have some particular properties that enable 
us to categorize them as semi-periodic quantities and the 
CPC-based power theory can be extended to systems with 
such quantities.  
Semi-periodic voltages and currents 

The main sources of electric energy in power systems, 
synchronous generators, create a voltage which is with high 
accuracy sinusoidal and just this generated voltage is the 
driving force for the energy delivery to the power system. 
The period T of this generated voltage can be detected by 
filtering and be used as a sort of “time-frame” for the energy 
flow analysis.  

Due to time variance of the load parameters, the load 
current can be non-periodic. This non-periodicity can be 
permanent or transient, so that after some time, the load 
current could be periodic with the period T again. The same 
applies to voltages that contain a response to the load 
currents. The mechanism of semi-periodic distortion is 
illustrated for a single-phase circuit in Fig. 3. 

 
Fig. 3. The mechanism of semi-periodic distortion. 

 

Voltages and currents in systems with time-varying 
loads, but with the energy delivered by generators of a sinu-
soidal voltage, are referred to in this paper as semi-periodic 
voltages and currents.  

In mathematics there exists [2] a concept of “quasi-
periodic” functions. The meaning of “a semi-periodic” quan-
tity or function, as defined in this paper, differs from the 
meaning of a “quasi-periodic” function, however.  

The ratio of the supply source impedance to the load 
impedance is usually confined in such a way that the load 
voltage rms value U does not decline at the maximum load 
power by more than 5%. Therefore, the semi-periodic com-
ponent of the load voltage should not be higher than a few 
per cents of the periodic component. The load current does 
not have this sort of limitation and consequently, semi-
periodicity can be much more visible in currents than in 
voltages. 

Fundamental harmonic u1 of the voltage periodic com-
ponent, separated by a filter, can be used for detecting the 
period T. A time interval of T duration will be referred to as 
an observation window. It is shown in Fig. 4.  

 

Fig. 4. Observation window. 

Such a window starts at some instant of time t = tk T and 
ends at instant tk.  

If the quantity x(t) as observed in the window, shown in 
Fig. 4, is reproduced every period T from minus to plus infi- 
nity, then a periodic extension  
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is created, shown in Fig. 5, which is a fictitious periodic 
quantity, identical with quantity x(t) only in the observation 
window, but not outside of it.  

 

Fig. 5. Semi-periodic quantity x(t) and periodic extension ( )x t . 

The energy delivered to a load during the observation 
window preceding the instant tk is equal to  

(5)                         ( ) = ( ) ( )

t

k

t T

k

k

W t u t i t dt


 . 

When the voltage and current at the load terminals are 
periodic with period T, this energy is constant, meaning  
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independent on the beginning of integration. It is not cons-
tant when the voltage and current are semi-periodic.  

Although interval T is not a period of semi-periodic 
quantities, it can be used for calculating the value of the 
average rate of energy flow over the observation window. At 
the end of this flow observation, at instant tk, this average 
value is equal to 
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k

t
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
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The power calculated in such a way can be regarded as the 
active power of a load with a semi-periodic voltage and 
current. When the voltage and current are not periodic, then 
the active power defined in such a way is not constant, but 
it is a function of time. This is emphasized with the wave 
symbol “  ”. It will be referred to as a running active 
power. 

The periodic extension ( )x t of what is observed in the 
observation window x(t) has the rms value, which can be 
calculated at the instant t = tk, namely 
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If the quantity is not periodic, then this value is not constant, 
but changes with the observation window. It will be referred 
to a running rms value of a semi-periodic quantity. When a 
semi-periodic current i(t) flows through a resistor of resis-
tance R, then the running active power of this resistor at the 
instant t = tk, is equal to 
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Thus, the running rms value has exactly the same meaning 
as the conventional rms value. It enables calculation of the 
energy loss on the resistor in the preceding observation 
window. It does not allow calculation outside of this win-
dow, however.  

For two semi-periodic quantities x(t) and y(t), which 
have periodic extensions with the same period T, a scalar 
product can be defined and calculated at the end of 
observation window, namely 
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The running rms value of the sum of two semi-periodic 
quantities x(t) and y(t) is equal to 
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This rms value can be expressed in terms of only running 
rms value of the sum components, as 
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on the condition that  
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i.e., when these quantities are mutually orthogonal. Proper-
ty (11), at condition (12), applies only to the observation 
window of T duration just preceding instant t = tk.  

The periodic extension ( )x t  can be expressed, more-
over, as a Fourier series  
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with crms values of its harmonics  
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calculated at instant of time tk. It means that quantity x(t) 
can reconstructed from its harmonics, assuming that it does 
not have points of discontinuity, with full accuracy. This 
reconstruction applies only to the observation window of T 
duration, however, but not beyond it. 

Discrete identification of semi-periodic quantities 
Although the running active power and rms value of 

semi-periodic voltages and currents, as well as the crms 
values of their harmonics were defined above as functionals 
of continuous quantities, discrete methods implemented in 
digital meters are needed for their measurement. Such a 
meter performs arithmetic operations on digital samples of 
the load voltage and current, provided by analog to digital 
(A/D) converters. The sequence of current samples is 
shown in Fig. 6. 

 

Fig. 6. Current samples in observation window. 

To avoid confusion with symbols of harmonics, denoted 
usually by un and in, these samples will be denoted by um 
and im in this paper. The last sample, i.e., at the instant of 
observation, has index k. Assuming that there are K 
samples of the voltage and current in the observation 
window, as shown in Fig. 6, then such a digital meter can 
calculate at the instant t = tk the running active power 
according to formula:  
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k k m m
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The number of samples K has to obey the Nyquist 
criterion. If nmax is the highest harmonic order of the periodic 
extension, then the minimum number K of samples in the 
period T has to be higher than the double value of nmax, i.e., 
K > 2nmax. This is the condition for preserving full informa-
tion on the waveform of a periodic quantity.  

A discrete formula for running rms value of semi-
periodic quantity has the form 
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1|| ||  = 
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while for the scalar product 
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Two semi-periodic quantities are orthogonal on the condi-
tion that 
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The complex rms (crms) value of the nth order harmonic 
periodic extension of a semi-periodic quantity in observation 
window x(t) can be obtained from a discrete formula  
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To implement a Fast Fourier Transform (FFT) algorithm, an 
integer power of two is usually selected for K value.  

The crms values (19) are not constant, but they change 
with time tk. They specify harmonics of only a single periodic 
extension ( )x t , which changes with the change of the 
observation instant to a new periodic extension. Therefore, 
semi-periodic quantities, as non-periodic, cannot be descri-
bed in terms of harmonics, but by entities referred in this 
paper as quasi-harmonics, with varying amplitude and 
phase. Only inside of the observation window quasi-harmo-
nics are identical with the common harmonics.  

Situations when two semi-periodic quantities are ortho-
gonal do not differ from those for periodic quantities. There 
are five such situations. Four of them apply to single-phase 
quantities, and the last one applies to three-phase quan-
tities. Two semi-periodic quantities are orthogonal, if: 

1 - for each pair of samples xm and ym in the observation 
window, their product 

xm ym = 0 

meaning, only one sample in the pair is different 
from zero. 

2 - one of these quantities is a derivative or integral of 
the other quantity. 

3 - these quantities are quasi-harmonics of different 
order. 

4 - these quantities are quasi-harmonics of the same 
order, but they are shifted mutually by /2. 

5 – these quantities are three-phase symmetrical quanti-
ties of a different sequence.  

When a semi-periodic quantity is composed of a sum of 
mutually orthogonal components, i.e., components that sati-
sfy any of these five conditions, then the running rms value 
of such a quantity can be calculated as a root of sum of 
squares of rms values of its components. 

Formulae (15) – (19) along with the concept of ortho-
gonality provide a basic mathematical tool for extension of 
the concept of the Currents’ Physical Components (CPC) to 
electrical systems with semi-periodic voltages and currents. 
At the instant of time t = tk, data on voltages and current at 
the load terminals, collected over the observation window of 
T duration, are sufficient for the load current decomposition 
into the Physical Components that uniquely identify physical 
phenomena in the load over that window. The only concern 
that could arise is the amount of calculation needed for that 
between the preceding observation instant of time t = tk-1 
and the current instant t = tk. This computational burden 
can be, as shown in the following section, only apparent, 
however.  

Recursive calculations of running quantities 

The running active power at instant t = tk can be calcu-
lated [7] as follows  
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it means that it can be calculated by updating its value cal-
culated previously, at instant t = tk-1. When the voltage and 
current are periodic, then  

,      k k K k k Ku u i i    

and updating is not needed, since 1k kP P 
 . 

Similarly, the running rms value of a semi-periodic x(t) 
quantity is 
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Thus it is enough to update the previously calculated value. 
The same applies to the complex rms values of quasi-

harmonics, namely 
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and eventually 
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Thus, only the difference of the latest sample xk and that, 
taken the period earlier xk-K, has to be taken into account 
when updating the crms value of the quasi-harmonic.  

Recursive calculation reduces drastically the amount of 
calculations, but their results can be affected by accumula-
tion of rounding error. Therefore, rounding should be as 
random as possible, and this should be taken into account 
in the calculation algorithm construction. Moreover, special 
procedures, such as periodic reset of calculated functionals 
might be considered. 

The theoretical frame presented above makes descript-
tion and interpretation of power properties of distribution 
systems with semi-periodic voltages and currents possible. 
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This can apply to all distribution system structures and load 
properties, but equations and definitions developed for 
semi-periodic voltages and currents are valid only in the T-
long observation window, just at the instant t = tk, when the 
last samples of voltages and currents in that window are 
provided for calculation. 

Semi-periodic currents occur in distribution systems due 
to semi-periodic supply voltage, and/or due to load para-
meters variability. This variability could be fast, causing 
current waveform distortion or slow, observed rather as a 
sort of amplitude or phase modulation. The load current dis-
tortion due to periodic variability of the load parameters can 
be interpreted as caused by generation of quasi-harmonics 
in the load. At slow variability of these parameters it can be 
assumed that load properties can be approximated and 
interpreted as properties of linear loads 

CPC of slowly varying single-phase linear loads  

Let us assume that a linear load is supplied with a semi-
periodic voltage  
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If this load is not a source of current quasi-harmonics, then 
it draws the current  
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specifies the running admittance of the load for harmonic 
frequencies. 

With respect to the running active power at instant tk, 
such a load is equivalent to a resistive load of conductance  
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The current of such a resistive load at instant t = tk 
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is the active current of the load, as defined by Fryze [3]. The 
remaining part of the load current  
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can be decomposed into the scattered current  
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and into the reactive current 
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Thus, the load semi-periodic current can be decomposed 
exactly as in the case of periodic currents into three com-
ponents such that at instant t = tk 

(32)                              a s r = + +k k k ki i i i     

which are Physical Components of this current. Inside of the  

observation window i.e., for tkT < t < tk, this decomposition 
of the semi-periodic current is identical with the common 
decomposition 

(33)                            a s r( ) = ( ) + ( ) + ( )t t t ti i i i  

but not outside of that window. Decomposition (32) cannot 
be found before the instant t = tk, i.e., at the instant when 
component of the decomposition (31) can be calculated. 

These components are mutually orthogonal, so that 

(34)                     2 2 2 2
a s r|| ||  = || || + || || + || ||k k k ki i i i    .  

Multiplying (34) by the square of the supply voltage running 
rms value, the power equation is obtained 

(35)                       2 2 2 2
s = + +k k k kS P D Q     

with 

(36)                           

df

df

s s

df

r

|| || || ||

|| || || ||

|| || || ||

k k k

k k k

k k k

S

D

Q .

u i

u i

u i

  

  

  







.  

Power equation (35) describes the relationship between 
powers of single-phase loads supplied with a semi-periodic 
voltage, however confined to loads that do not generate 
quasi-harmonics. It is valid in the interval of T duration pre-
ceding instant t = tk. It could be written, for convenience, in 
the traditional form 

(37)                       2 2 2 2
s= + +S P D Q .  

but it should be remembered, that these powers may not 
have a constant value and this equation is valid only in the 
window of T duration preceding time instant t = tk, but not 
outside of that time window.  

CPC of harmonics generating single-phase loads 

Nonlinear loads or loads with fast varying parameters or 
quasi-periodic switches can generate quasi-harmonics. The 
running active power of such quasi-harmonics could be 
negative, which means that they convey the energy from 
the load back to the supply source. This phenomenon, reve-
aled in systems with periodic voltages and currents [6], is a 
distinctive physical phenomenon, which has to be taken into 
account when the power properties of electrical circuits are 
analyzed. Let us describe such loads in terms of CPC when 
the voltage and current are semi-periodic. 

Let us consider the equivalent circuit shown in Fig. 7. 

 
Fig. 7. Equivalent circuit of a load and the supply source. 

The running active power of the nth order quasi-harmo-
nic 

(38)                       cosn k n k n k n kP U I       

depending on the phase-shift, can be positive, negative or 
zero. 

The set N of quasi-harmonics orders n can be decom-
posed into two sub-sets. 
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When the energy flow is caused by a quasi-harmonic of 
the nth order in the distribution voltage, i.e., the power nkP  is 
positive, this quasi-harmonic order belongs to sub-set NC. 
When this flow occurs because the quasi-harmonic is gene-
rated in the load, i.e., the power nkP  is negative, its order 
belongs to sub-set NG. The sign of the active power 
depends on the phase-shift between the voltage and cur-
rent quasi harmonic, thus  

(39)                       
C

G

if   | | 2,  then 

if   | | 2,  then .

nk

nk

/ n N

/ n N

 

 





 

 
 

It enables the voltage and current decomposition into 
components with harmonics from sub-sets NC and NG. At 
the instant t = tk 

(40)         

C G

C Gk nk nk nk k k
n N n N n N

i i i i i i     

  
       , 

(41)       

C G

C Gk nk nk nk k k
n N n N n N

u u u u u u     

  
       .  

The voltage uG is defined as the negative sum of voltage 
quasi-harmonics because, as a supply source response to 
load generated current, iG, it has the opposite sign as 
compared to the sign of the distribution system originated 
voltage quasi-harmonics. The same applies to quasi-harmo-
nic active power, thus 

(42)       

C G

C Gk nk nk nk k k
n N n N n N

P P P P P P     

  
       .  

Sub-sets NC and NG do not contain common quasi-har-
monic orders n, thus currents iC and iG are mutually ortho-
gonal. Hence their running rms values satisfy the relation-
ship 

(43)                           2 2 2
C G|| ||  = || || + || ||i i i   .  

The same applies to the voltage rms values, namely 

(44)                         2 2 2
C G|| ||  = || || + || ||u u u   .  

 Decomposition (39) of quasi-harmonic orders and the 
voltage and current according to (40) and (41), mean that 
the system, as presented in Fig. 7, can be described as 
superposition of two systems. The first, shown in Fig. 8a, 
has an LTI load and the second, shown in Fig. 8b, has only 
a current source on the customer side while the distribution 
system is a passive energy receiver. 

 

Fig. 8 (a) Equivalent circuit for harmonics n  NC and (b) equivalent 
circuit for harmonics n  NG. 
 

The circuit in Fig. 8a, as a system with a linear load, can be 
described according to the CPC approach. Namely, if the 
equivalent admittance is  

(45)                          nk
nk nk nk

nk

G jB
I

Y
U


  

   .  

and the equivalent conductance 

(46)                               C

C
e 2

 
|| ||

k
k

k

P
G

u




 , 

with 

(47)                           

C

C
2|| || || ||k n k

n N

u u 


  , 

then the current Ci
  can be decomposed at instant t = tk  

into the active, scattered and reactive components, namely 

(48)                         C C C Ca s r =  +  +k k k ki i i i    , 

where 

(49)                               C C

df

a ek k ki G u    

is the active current 

(50)    
df

C

2

s e 0 e

C

( ) 2Re ( )
jn k

K
k nk k k nk k nk

n N

i G G U G G eU

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
     

is the scattered current and 

(51)                    
df

C

2

r

C

2Re
jn k

K
k nk nk

n N

i jB eU

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
   

is the reactive current. Eventually, the load current can be 
decomposed into four physical components,  

(52)                      C C C Ga s r=  +  +  + kk k k ki i i i i     , 

where 

(53)                      
df 2

G

G

2Re
jn k

K
k nk

n N

i eI


 


   

is the load generated current at instant t = tk. These cur-
rents are mutually orthogonal, hence at instant t = tk 

(54)            C C C G
2 2 2 2 2

a s r|| || = || || + || || + || || + || ||k k k k ki i i i i     . 

A diagram which geometrically illustrates this relationship is 
shown in Fig. 9. 

 
Fig. 9. Diagram of running rms values of the supply current physical 
components of a HGL. 
 

Loads with fast varying parameters or HGLs are often 
supplied with sinusoidal or quasi-sinusoidal voltage, or such 
approximation is quite sufficient for analysis of the power 
properties in such situations. Fast variance of the load 
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parameters could be the most dominating feature of the 
system. In such a situation, the set NC of distribution system 
originated harmonic orders n is confined to only n = 1, i.e., 
NC = {1}, while all other orders belong to the set NG, 
meaning, the set of the load originated harmonic orders. 
The current iC(t) in such a case is composed only of the 
active and reactive currents, which are quasi-sinusoidal, 
while the current iG(t) is composed of all quasi-harmonics. 
The scattered current does not occur, of course, in the 
supply current and consequently, it can be decomposed 
into the active, reactive and the load generated currents. 
The formula (52), could be reduced in such a situation to 

(55)                            C C Ga r =  +  + kk k ki i i i    . 

Extrapolation in the future 
The approach presented above enables decomposition 

of a semi-periodic current into physical components, which 
is valid only in the observation window, which directly pre-
cedes the instant of the present measurements t = tk. 
Although it provides full information on the power pheno-
mena in the load, it is, unfortunately, to some degree 
useless for compensation. Assuming that a switching com-
pensator is used for the power factor improvement, then 
properties of the load at the instant t = tk+1, i.e., in a direct 
future have to be known. Currents that are to be compen-
sated, of the value just at that instant, t = tk+1, have to be 
injected by the compensator into the system.  

Their value can be predicted by extrapolation. The most 
simple is a linear extrapolation, based on the assumption 
that changes in the direct future, in the time of a single 
sampling interval t, are equal to changes in the direct past. 
This assumption means that if kx  is a value of a semi-
periodic quantity at the instant t = tk, then in the direct 
future, at t = tk+1, is assumed to be 

(56)        1 1 1( ) = 2k k k k k k kx x x x x x x x       
         . 

The measurement at the instant t = tk+1, can update this 
extrapolated value to a true one.  

Such extrapolation can provide fundamentals for quasi-
instantaneous generation of reference signals for switching 
compensator control. 

Conclusions 
The paper demonstrates that the Currents’ Physical 

Components – based power theory, originally developed for 
systems with periodic voltages and currents, can be gene-
ralized to systems where these quantities are semi-periodic. 
It means that also in such conditions, the interpretation of 
power phenomena in electrical circuits, as provided by the 
CPC, remains valid. 
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