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Abstract. The paper discusses the possibility of using personal computers as computing units in parallelised computation. Optimisation computation 
based on a parallel genetic algorithm is proposed. A method of parallelised computing is discussed using a personal computer equipped with a multi-
core processor. The article presents examples of results obtained as a result of parallelised computing. 
 
Streszczenie. W pracy omówiono możliwości wykorzystania komputerów osobistych jako jednostek liczących w obliczeniach równoległych. 
Zaproponowano realizację obliczeń optymalizacyjnych bazujących na zrównoleglonym algorytmie genetycznym. Omówiono metodę zrównoleglenia 
obliczeń na komputerze osobistym wyposażonym w procesor wielordzeniowy. W artykule podano przykładowe wyniki uzyskane dzięki 
zrównolegleniu obliczeń (Optymalizacja metodą zrównoleglonego algorytmu genetycznego na komputerze osobistym). 
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Introduction 

Recent years saw a dynamic growth of computer 
hardware. This resulted in an increase in the computing 
capacity of computers (including personal ones), which 
became efficient units for complex computation [1, 2, 3]. 
Computer efficiency was initially increased by raising the 
frequency of processor timing, then by introducing the 
multithreading technology, and finally by constructing multi-
core units (16-core processors are currently produced) [4]. 

Unfortunately, an increased number of computing units 
does not always mean a shorter time of computing. If not 
adopted to a multi-core architecture, software is not more 
efficient when installed on such computers. This problem 
can be solved by preparing software using the .NET 
platform and its TPL library (Task Parallel Library), which 
features a set of classes to support the programmer while 
creating applications to parallelise computations (in the 
tasks where parallelising is possible) [4, 5, 6]. 
 
Parallel computing environment 

As of the 4.0 version the .NET programming platform 
has been extended with the TPL library (Task Parallel 
Library), which is adapted to concurrent programming. TPL 
extends conventional threads using the Task class. This 
class makes it possible to execute tasks and loops in a 
parallel manner. Figure 1 presents an architecture of basic 
parallel programming techniques available from the .NET 
Framework platform in the TPL library [5, 6]. 

In the System.Threading.Tasks namespace, the 
Parallel class is also available, which can be used to 
parallelise threads. This class is especially useful in tasks 
that do not require threads to be synchronised. Methods of 
executing “for” and “foreach” loops in a parallel manner are 
made available by the Parallel class. When used, they 
burden all processor cores. The sequence of iterations and 
the division thereof among the processor cores are 
automatic  [5, 6]. 

The Parallel.For method automatically 
synchronises all tasks it executes prior to completion. 
Within further repetitions, there is no danger of data 
erasure. In order for the Parallel.For loop to be used 
correctly, no recurrent dependency may occur between 
tasks executed in particular loop iterations. A further 
iteration cannot depend on the variable of the preceding 
iteration. The iterations of a parallel loop are not executed in 
the index sequence [5, 6]. 

 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1. Parallel programming architecture using the mechanism 
available in the .NET Framework platform  

 
The parallel loop structures listed are the simplest forms 

of asynchronous computing tasks to be parallelised, but due 
to their construction they are not always the most effective 
in terms of numeric analyses. With the input into the division 
of tasks among particular cores, the speedup of computing 
is not proportional to the number of the calculating units 
used. The longer the time of the computing of one iteration, 
the larger it is. Then, the times of thread division and 
synchronization become negligible [5, 6, 9]. 
 
Optimisation algorithm parallelising 

The Parallel class available from the .NET platform can 
be used effectively when tasks that do not require 
synchronisation are parallelised. This is the case when 
optimisation computing is used with a genetic algorithm 
method. In this method every generation has adjustment 
function values determined for particular individuals. These 
calculations can be carried out in parallel, being 
independent of one another (each individual is adjusted 
irrespective of the other individuals). Then, a series of 
genetic operations is conducted using a pool of individuals 
[7, 8, 9, 10]. 
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With the Parallel class, it is possible to parallelise the 
computation of individuals’ adjustment indices. In this case 
one (main) thread is responsible for all genetic operations to 
individuals. These operations are not subject to 
parallelising. The adjustment indices are computed in the 
Parallel.For loop with the available processor cores. 
(Fig. 2). Each loop iteration is executed by a different core 
(this process is subject to parallelisation). 

 
 
 

 
 
 
 
 
 
 
 
Fig. 2. Parallelised genetic algorithm organisation using 
mechanisms available from the NET Framework platform  

 

When the Parallel.For loops are created, 
corresponding in iteration quantitative terms to the number 
of individuals in a generation, the computing results are 
turned over to the main thread, followed by genetic 
operations. 
 

Object to be optimised 
The advantages of using a computer equipped with a 

multi-core computer for parallelised computations were 
examined by optimising the dimensions of a three-phase, 
three-conductor unscreened high current busway with solid 
insulation. Figure 3 shows its cross-section. 

 
 
 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
Fig. 3. Cross-section of the high current busway with solid 
insulation 
 

Phase conductors, each of a Sc cross-section area, are 
embedded in solid insulation, made out of a component of 
epoxide resins. The geometry of the system is conditioned 
by five variables: a, b – dimensions of the cross-section of 
the phase conductor; and c, d, k – dimensions determining 
the distribution of conductors in the insulation. 

All electrodynamics calculations start with defining the 
distribution of a current density J(x,y) in live working 
conductors with specified phase currents [2]. It can be 
obtained by solving the system of integral equations (1). 
 
 
(1)  
 

 

where:  – magnetic permeability of the conductor material; 
ω – pulsation;  - electrical conductivity of the conductor 
material; (x, y) – the observation point; (x’, y’) – the source 
point; Sc - cross-section area of the conductor. 

With the Joule law, the current density distribution 
makes it possible to determine the loss of power Pc per a 
length unit of particular phase conductors, as defined by the 
dependence: 
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Approximate current density vector distribution can be 
used to determine the volumetric density distribution of the 
thermal power c generated in the phase conductors [2]: 
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This is used to determine temperature distribution in the 
system. It is decisive in the busway geometric dimensions, 
conditioning the ability to carry heat away. The heat 
generated by active power inside the phase conductors 
complies with the Poisson’s equation [2]: 
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where: c – thermal conductivity of the phase conductor 
material. 

As regards temperature, Laplace’s equation is complied 
with inside the insulator and outside the busway: 

(5)   0,2  yxT  

The heat energy generated in the phase conductors is 
transferred to the insulation where, as a result of 
conductivity, the heat is carried to the busway surface and 
then to the environment by convection and radiation. On the 
surface of the busway, the following equation is complied 
with [2]: 
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where: 
CR  – heat transfer coefficient of convection and 

radiation (defining methods are given in [2]), To – ambient 
temperature. 

The calculations also allow for a voltage gradient and 
the forces acting in the system. Details concerning the 
solving of the equations (1-6) and the determining of other 
parameters of electrodynamics can be found in the 
publications [2]. 

As an optimisation criterion, the paper assumes the 
minimisation of the busway production and operation costs 
for a preset time, and with a number of limitations. The 
objective function (7) is financial in character and uses 
geometric variables conditioning the cross-section area of 
the busway (investment outlays) and the active power loss 
(operations costs). 

(7)   .exp. loitinvest kkS u  

where: u – decision variable vector; kinwest. – investment 
costs, kexploit. – operation costs. 

A number of limitations must be provided for by the 
objective function S(u) minimized in the process of 
optimization. The most important include the maximum 
temperature of the working conductor and insulator, 
maximum voltage gradients, maximum forces acting, in the 
steady and short-circuit state, as well as requirements of 
standards, for example, on short-circuit currents [2]. 
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Computing results 
The paper compares optimisation computing times 

using a genetic algorithm method and computers featuring 
different hardware configurations and conventional for and 
Parallel.For loops. A three-phase, unscreened high 
current busway with solid insulation is the object to be 
optimised [2].  

Electrodynamics computing for that type of objects is 
complex, making the time of determining the adjustment of 
particular individuals relatively long. Hence, it might be 
expected that the time input to divide tasks for particular 
cores is negligible. 

The tests used personal computers with different 
hardware configurations (table 1). 

 
Table 1. Parameters of the computers used for computing 

Parameter Computer 1 Computer 2 Computer 3 

Processor Core2– T8100 i3 – 2120 i7 – 3770 

Number of cores 2 2 4 

Threads per core 1 2 2 

Clock speed 2.10 GHz 3.30 GHz 3.40 GHz 

Cache memory 3MB 3 MB 8 MB 

RAM type 
DDR2 
2 GB 

DDR3 
8 GB 

DDR3 
16 GB 

 
Computation time was measured for each computing 

unit in two variants, namely for sequential computation and 
parallel computation (using the Parallel class). Figure 4 
presents the results obtained. 

Fig. 4. Optimisation calculation time of a sample task depending on 
the processor type and calculation variant 
 

The longest computation time was obtained with the 
computer of the smallest capacity, without parallelised 
computing. It was approximately 41830 seconds. The 
shortest optimisation computing time of the same task was 

4850 seconds. It was obtained with a computer of the 
largest computing capacity with a processor of four cores  
simultaneously executing eight threads. In this case 
parallelized optimising computation was carried out using 
the Parallel.For loop. 
 
IV. Conclusion 

The tests carried out proved that, irrespective of the 
multi-core processor model used, the parallelisation of 
optimising computation using the genetic algorithm method 
with the TPL mechanisms available from the TPL library 
shortened the time of the execution of the computation. 
With the least efficient 2-core processor, the computing 
speedup was 1.9, and with the most effective, 4-core one, it 
was 3.4.  

It was possible to shorten the computing time to such an 
extent because the time input into the division of tasks 
among the particular cores was negligible in relation to the 
electrodynamics computation with a single processor core. 
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