
36 PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 91 NR 7/2015

Jarosław JAJCZYK

Poznan University of Technology, Institute of Electrical Engineering and Electronics

doi:10.15199/48.2015.07.12

Optimisation using a parallelised genetic algorithm
on a personal computer

Abstract. The paper discusses the possibility of using personal computers as computing units in parallelised computation. Optimisation computation
based on a parallel genetic algorithm is proposed. A method of parallelised computing is discussed using a personal computer equipped with a multi-
core processor. The article presents examples of results obtained as a result of parallelised computing.

Streszczenie. W pracy omówiono możliwości wykorzystania komputerów osobistych jako jednostek liczących w obliczeniach równoległych.
Zaproponowano realizację obliczeń optymalizacyjnych bazujących na zrównoleglonym algorytmie genetycznym. Omówiono metodę zrównoleglenia
obliczeń na komputerze osobistym wyposażonym w procesor wielordzeniowy. W artykule podano przykładowe wyniki uzyskane dzięki
zrównolegleniu obliczeń (Optymalizacja metodą zrównoleglonego algorytmu genetycznego na komputerze osobistym).

Keywords: optimisation, genetic algorithm, parallel computing.
Słowa kluczowe: optymalizacja, algorytm genetyczny, obliczenia równoległe.

Introduction

Recent years saw a dynamic growth of computer
hardware. This resulted in an increase in the computing
capacity of computers (including personal ones), which
became efficient units for complex computation [1, 2, 3].
Computer efficiency was initially increased by raising the
frequency of processor timing, then by introducing the
multithreading technology, and finally by constructing multi-
core units (16-core processors are currently produced) [4].

Unfortunately, an increased number of computing units
does not always mean a shorter time of computing. If not
adopted to a multi-core architecture, software is not more
efficient when installed on such computers. This problem
can be solved by preparing software using the .NET
platform and its TPL library (Task Parallel Library), which
features a set of classes to support the programmer while
creating applications to parallelise computations (in the
tasks where parallelising is possible) [4, 5, 6].

Parallel computing environment

As of the 4.0 version the .NET programming platform
has been extended with the TPL library (Task Parallel
Library), which is adapted to concurrent programming. TPL
extends conventional threads using the Task class. This
class makes it possible to execute tasks and loops in a
parallel manner. Figure 1 presents an architecture of basic
parallel programming techniques available from the .NET
Framework platform in the TPL library [5, 6].

In the System.Threading.Tasks namespace, the
Parallel class is also available, which can be used to
parallelise threads. This class is especially useful in tasks
that do not require threads to be synchronised. Methods of
executing “for” and “foreach” loops in a parallel manner are
made available by the Parallel class. When used, they
burden all processor cores. The sequence of iterations and
the division thereof among the processor cores are
automatic [5, 6].

The Parallel.For method automatically
synchronises all tasks it executes prior to completion.
Within further repetitions, there is no danger of data
erasure. In order for the Parallel.For loop to be used
correctly, no recurrent dependency may occur between
tasks executed in particular loop iterations. A further
iteration cannot depend on the variable of the preceding
iteration. The iterations of a parallel loop are not executed in
the index sequence [5, 6].

Fig. 1. Parallel programming architecture using the mechanism
available in the .NET Framework platform

The parallel loop structures listed are the simplest forms

of asynchronous computing tasks to be parallelised, but due
to their construction they are not always the most effective
in terms of numeric analyses. With the input into the division
of tasks among particular cores, the speedup of computing
is not proportional to the number of the calculating units
used. The longer the time of the computing of one iteration,
the larger it is. Then, the times of thread division and
synchronization become negligible [5, 6, 9].

Optimisation algorithm parallelising

The Parallel class available from the .NET platform can
be used effectively when tasks that do not require
synchronisation are parallelised. This is the case when
optimisation computing is used with a genetic algorithm
method. In this method every generation has adjustment
function values determined for particular individuals. These
calculations can be carried out in parallel, being
independent of one another (each individual is adjusted
irrespective of the other individuals). Then, a series of
genetic operations is conducted using a pool of individuals
[7, 8, 9, 10].

.NET Program
(with implementation of

numerical parallel algorithms)

Task Parallel Library

Parallel Constructs: Threads,
Tasks, Loops (Parallel.For,

Parallel.ForEach)

Threads

Proc 1 ... Proc n

PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 91 NR 7/2015 37

With the Parallel class, it is possible to parallelise the
computation of individuals’ adjustment indices. In this case
one (main) thread is responsible for all genetic operations to
individuals. These operations are not subject to
parallelising. The adjustment indices are computed in the
Parallel.For loop with the available processor cores.
(Fig. 2). Each loop iteration is executed by a different core
(this process is subject to parallelisation).

Fig. 2. Parallelised genetic algorithm organisation using
mechanisms available from the NET Framework platform

When the Parallel.For loops are created,
corresponding in iteration quantitative terms to the number
of individuals in a generation, the computing results are
turned over to the main thread, followed by genetic
operations.

Object to be optimised
The advantages of using a computer equipped with a

multi-core computer for parallelised computations were
examined by optimising the dimensions of a three-phase,
three-conductor unscreened high current busway with solid
insulation. Figure 3 shows its cross-section.

Fig. 3. Cross-section of the high current busway with solid
insulation

Phase conductors, each of a Sc cross-section area, are
embedded in solid insulation, made out of a component of
epoxide resins. The geometry of the system is conditioned
by five variables: a, b – dimensions of the cross-section of
the phase conductor; and c, d, k – dimensions determining
the distribution of conductors in the insulation.

All electrodynamics calculations start with defining the
distribution of a current density J(x,y) in live working
conductors with specified phase currents [2]. It can be
obtained by solving the system of integral equations (1).

(1)

where:  – magnetic permeability of the conductor material;
ω – pulsation;  - electrical conductivity of the conductor
material; (x, y) – the observation point; (x’, y’) – the source
point; Sc - cross-section area of the conductor.

With the Joule law, the current density distribution
makes it possible to determine the loss of power Pc per a
length unit of particular phase conductors, as defined by the
dependence:

(2) 
cS

c dydxyxJP '')','(
1 2



Approximate current density vector distribution can be
used to determine the volumetric density distribution of the
thermal power c generated in the phase conductors [2]:

(3)    



2

','
,

yxJ
yxc 

This is used to determine temperature distribution in the
system. It is decisive in the busway geometric dimensions,
conditioning the ability to carry heat away. The heat
generated by active power inside the phase conductors
complies with the Poisson’s equation [2]:

(4)    
c

c yx
yxT


 ,

,2 

where: c – thermal conductivity of the phase conductor
material.

As regards temperature, Laplace’s equation is complied
with inside the insulator and outside the busway:

(5)   0,2  yxT

The heat energy generated in the phase conductors is
transferred to the insulation where, as a result of
conductivity, the heat is carried to the busway surface and
then to the environment by convection and radiation. On the
surface of the busway, the following equation is complied
with [2]:

(6)]),([
),(

oCRi TyxT
n

yxT



 

where:
CR – heat transfer coefficient of convection and

radiation (defining methods are given in [2]), To – ambient
temperature.

The calculations also allow for a voltage gradient and
the forces acting in the system. Details concerning the
solving of the equations (1-6) and the determining of other
parameters of electrodynamics can be found in the
publications [2].

As an optimisation criterion, the paper assumes the
minimisation of the busway production and operation costs
for a preset time, and with a number of limitations. The
objective function (7) is financial in character and uses
geometric variables conditioning the cross-section area of
the busway (investment outlays) and the active power loss
(operations costs).

(7)   .exp. loitinvest kkS u

where: u – decision variable vector; kinwest. – investment
costs, kexploit. – operation costs.

A number of limitations must be provided for by the
objective function S(u) minimized in the process of
optimization. The most important include the maximum
temperature of the working conductor and insulator,
maximum voltage gradients, maximum forces acting, in the
steady and short-circuit state, as well as requirements of
standards, for example, on short-circuit currents [2].

Genetic
operations

(main thread)Calculation
of objective

function (core 1)

Calculation
of objective

function (core ...)

Calculation
of objective

function (core n)

Calculation
of objective

function (core ...)

a

b
c

d

k

x

y

z

Sc

L1 L2 L3










c

c

S
c

S

IdydxyxJ

dydx
yyxx

yxJjyxJ

'')','(

''
)'()'(

1
ln)','(

2

1
),(

22




38 PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 91 NR 7/2015

Computing results
The paper compares optimisation computing times

using a genetic algorithm method and computers featuring
different hardware configurations and conventional for and
Parallel.For loops. A three-phase, unscreened high
current busway with solid insulation is the object to be
optimised [2].

Electrodynamics computing for that type of objects is
complex, making the time of determining the adjustment of
particular individuals relatively long. Hence, it might be
expected that the time input to divide tasks for particular
cores is negligible.

The tests used personal computers with different
hardware configurations (table 1).

Table 1. Parameters of the computers used for computing

Parameter Computer 1 Computer 2 Computer 3

Processor Core2– T8100 i3 – 2120 i7 – 3770

Number of cores 2 2 4

Threads per core 1 2 2

Clock speed 2.10 GHz 3.30 GHz 3.40 GHz

Cache memory 3MB 3 MB 8 MB

RAM type
DDR2
2 GB

DDR3
8 GB

DDR3
16 GB

Computation time was measured for each computing

unit in two variants, namely for sequential computation and
parallel computation (using the Parallel class). Figure 4
presents the results obtained.

Fig. 4. Optimisation calculation time of a sample task depending on
the processor type and calculation variant

The longest computation time was obtained with the
computer of the smallest capacity, without parallelised
computing. It was approximately 41830 seconds. The
shortest optimisation computing time of the same task was

4850 seconds. It was obtained with a computer of the
largest computing capacity with a processor of four cores
simultaneously executing eight threads. In this case
parallelized optimising computation was carried out using
the Parallel.For loop.

IV. Conclusion

The tests carried out proved that, irrespective of the
multi-core processor model used, the parallelisation of
optimising computation using the genetic algorithm method
with the TPL mechanisms available from the TPL library
shortened the time of the execution of the computation.
With the least efficient 2-core processor, the computing
speedup was 1.9, and with the most effective, 4-core one, it
was 3.4.

It was possible to shorten the computing time to such an
extent because the time input into the division of tasks
among the particular cores was negligible in relation to the
electrodynamics computation with a single processor core.

REFERENCES
[1] Bednarek K., Kasprzyk L., Speeding up of electromagnetic and

optimization calculations by the use of the parallel algorithms,
Przegląd Elektrotechniczny, 85 (2009), nr 12, 65-68

[2] Jajczyk J., Optimization of the geometry of high currency
busducts with solid insulation with the use of the modified
genetic algorithm method, Ph D thesis, Poznan University of
Technology, (2008)

[3] Skowronek K., Trzmiel G., The method for identification of
fotocell in real time, Przegląd Elektrotechniczny, 83 (2007), nr
11, 108-110

[4] Wyrzykowski R., PC computer clusters and multi-core
architectures. Structure and use, Exit, (2009)

[5] Warczak M., Matulewski J., Pawłaszek R., Sybilski P., Borycki
D., Dziubak T., Programowanie równoległe i asynchroniczne w
C# 5.0, Helion, (2013)

[6] Albahari J., Threading in C#, O’Reilly Media, (2010),
www.albahari.com/threading/ (04.10.2014)

[7] Fogel D. B., Evolutionary Computation: Toward a New
Philosophy of Machine Intelligence, IEEE Press/Wiley-
Interscience, (2006)

[8] Goldberg D.E., Genetic Algorithms in Search, Optimization and
Machine Learning, Addison-Wesley Publishing Company,
(1989)

[9] Jajczyk J., Optimization calculations with the genetic algorithm
method on a computer cluster, Przegląd Elektrotechniczny,
90 (2014), nr 4, 232-234

[10] Ramirez J. A., Saldanha R. R., Takahashi R. H. C.,
Vasconcelos J. A., Improvements in Genetic Algorithms, IEEE
Transactions on Magnetics, 37 (2001), No. 5, 3414-3417

Authors: Jarosław Jajczyk ,Phd, Eng., Poznan University of
Technology, Faculty of Electrical Engineering and Electronics, ul.
Piotrowo 3a, 60-965 Poznań, e-mail:
jaroslaw.jajczyk@put.poznan.pl.

0

5

10

15

20

25

30

35

40

45

Core2 – T8100 i3 – 2120 i7 – 3770

co
m

pu
ta

tio
n

 ti
m

e
 x

10
0

0
[s

]

sequentially

parallel

