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Abstract. One of the most important design decisions in Non-Intrusive Load Monitoring (NILM) systems is choosing which electrical parameters will 
be used to define load signatures. In this paper, we present an experimental study where several electrical quantities of common home appliances 
were measured, in order to identify the most adequate to perform load disaggregation. It was found that active power, reactive power, rms voltage, 
and the first five odd harmonics of the current and voltage signals comprises the best set of parameters to define the signatures of residential loads. 
 
Streszczenie. W artykule zaprezentowano eksperymentalne studium w którym zmierzono parametry typowych urządzeń elektrycznych w celu 
określenia i zestawienia obciążeń. Stwierdzono że moc czynna, moc bierna, napięcie skuteczne i pierwsze pięć nieparzystych harmonicznych prądu 
mogą stanowić podstawę do prognozowania obciążeń. Badania parametrów urządzeń dla nieinwazyjnego monitorowania obciążeń.  
 
Keywords: load signature, power signature, non-intrusive load monitoring (NILM), harmonics. 
Słowa kluczowe: monitorowanie obciążeń, znaczniki obciążeń.. 
 
 
Introduction 

Over the last years, researches all around the world has 
been developing load monitoring systems, methodologies 
and algorithms to disaggregate the total energy 
consumption of a building. Despite the variety of techniques 
and technologies used, the disaggregation systems are 
divided in two main groups: intrusive and non-intrusive. 
Intrusive or decentralized systems, are those in which the 
power consumption is measured individually in each load. 
These systems are composed of several power meters, 
making them relatively expensive and difficult to install and 
maintain. The other way to disaggregate the energy 
consumption is through Non-Intrusive Load Monitoring 
(NILM). In this approach, only one power meter is required, 
usually installed at the utility service entrance. Systems 
which use the NILM methodology are cheaper and easier to 
install [1-5], but are more complex and unable to accurately 
identify the power consumption of appliances with multiple 
operating states, non-discrete changes in the power 
consumption or larger oscillations in the steady state, as 
some fluorescent lamps, refrigerators, AC variable speed 
drivers, and other non-linear loads [1-6]. 

NILM systems perform the load disaggregation based 
on the principle of power signature, which is defined as a 
set of electrical characteristics of a load that can uniquely 
identify it. Power signatures can be defined in several ways, 
the simplest is using power or current curves in the time 
domain, but almost all electrical parameters derived from 
voltage and current can be regarded as power signature. 
Active, reactive, and apparent powers, power factor, rms 
voltage, and current are quantities commonly used to define 
power signatures. These parameters can be represented 
either in time or frequency domain, or even mathematically 
in terms of wavelets, eigenvalues or singular value 
decomposition.  

Regardless of the electrical parameters chosen to 
compose the power signatures, the recognition algorithm 
can operate using three different approaches: analyzing the 
transient characteristics (the period of time when the load is 
turned on or off), the steady state characteristics or a 
combination of both. It is worth to notice that steady state 
analysis requires a simpler hardware (since the sampling 
rate required is smaller than in transient analysis) [2], and 
the signatures of two or more loads are additive [7].  

The choice of which electrical parameters are used to 
define load signatures is a critical factor of the performance 
of the NILM system [1]. The use of too few parameters can 

decrease the accuracy on the load identification, particularly 
for appliances which present a complex electronic behavior, 
as in personal computers where many internal loads are 
turned on and off with an unpredictable behavior (hard-
disks, video graphic cards, sound cards, etc.). On the other 
hand, the use of too many parameters requires more 
complex algorithms and, therefore, more computational 
power, especially when a big number of appliances are 
monitored [1].  Since most commercial NILM systems are 
developed using embedded processors, the computational 
complexity to calculate the electrical parameters is a limiting 
factor in the development of these systems. 

Although NILM has been studied for more than two 
decades, there is no consensus regarding which electrical 
quantities are the best for load disaggregation. In this work, 
we present the results of an experimental study performed 
with 12 common home appliances, which were measured 
and analyzed in order to determine the best set of electrical 
characteristics for development of NILM systems. 

 
Non-Intrusive Load Monitoring 

The first non-intrusive load disaggregation technique 
was proposed by Hart in the 1990’s [8]. In this work the 
operating schedules of individual loads were determined by 
identifying instants that the power consumption changes 
from one steady state value to another. These steady-state 
changes, known as events, are characterized by the 
magnitude and sign of the active and reactive power values 
that is associated with a given load, which is being turning 
on/off. In this approach, only the information about steady 
state of the loads was used for its identification. A database 
containing the active and reactive power of every load is 
required to perform load disaggregation. 
 According to [10], this method fails in several cases: (i) 
when there are loads that overlap ambiguously in the ∆P-
∆Q plane (presents similar active and reactive power 
consumptions), (ii) when more than one load are switched 
on/off simultaneously, (iii) when the load is switched on/off 
faster than the power meters can capture, and (iv) when a 
new appliance, not registered in the database, is used.  

In the 90’s researchers started using transient 
information for load disaggregation. Leeb [3] proposed a 
prototype of a residential NILM system that uses transient 
characteristics in the real and reactive power space to 
distinguish loads. The paper in [11] presents a NILM for 
commercial buildings based on steady-state and transient 
load-detection algorithms. The developed prototype is able 
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to differentiate appliances with near-simultaneous start-ups 
and similar power levels. Other techniques for load 
disaggregation based on transient were later proposed in 
[1,6,12-14].  

Cole and Albicki [6] proposed a NILM system for three-
phase environment that uses the first eight odd harmonics 
of the current signal for load disaggregation. Harmonic 
content proved to be very useful to distinguish loads that 
ambiguously overlap in the ∆P-∆Q plane, as some non-
linear loads. After the important work of Cole and Albicki, 
many systems which use harmonic analysis were proposed 
[1,5,12,15-18].  
More information about NILM can be found in the reviews 
presented in [2,15]. 
 
Electrical Quantities Used to Define Power Signature 

Although many non-intrusive load disaggregation 
methods have been recently proposed [1,5,12,19,20], a 
detailed study discussing which electrical parameters 
derived from voltage and current curves are more adequate 
for load identification has not yet been presented. According 
to [1], finding a meaningful set of electrical parameters to 
distinguish all appliances is one of the current challenges of 
load monitoring. Authors in recent publications clearly do 
not agree on the choice of these parameters. It is observed 
that, although active power and current are common to all 
works which perform identification based on load 
signatures, we see many different approaches, as the use 
of reactive power [4,5,12,16], power factor [21], and 
harmonic components in the current signal [1,5,6,12,16-18]. 
Analysis in the frequency domain has been shown to be 
promising; however, there is no consensus regarding which 
harmonics are appropriate for this purpose. In [1], the 
authors used the first three odd harmonics, in [6,16] the first 
eight odd harmonics, in [17] the sixteen first even and odd 
harmonics, whereas in [5] only the 2nd and 3rd harmonics 
were analyzed. 

Considering the relatively high computational cost of the 
algorithms used to calculate the Discrete Fourier Transform 
(FFT [22], Goertzel [23], etc.), calculation of many 
harmonics at a high rate and in real time may become 
impractical. However, the use of too few harmonic will 
cause loss of important information for load disaggregation, 
especially for non-linear loads, resulting in misidentification. 
 Thus, the choice of an electrical parameter for defining 
load signature depends on two basic characteristics: it has 
to clearly present different values for different appliances, 
and also must require few computational resources to be 
calculated. In this paper we present an experimental study 
where the voltage and current signals from residential loads 
were measured and, from these data, commonly used 
parameters for load identification (rms current, active, 
reactive, and apparent powers, power factor, and the first 
harmonics of the current signal up to the 25th) and rms 
voltage were calculated. Based on the obtained data we 
indicate which are the best electrical parameters to be used 
in advanced load disaggregation algorithms. 
 
Experimental Setup 

To obtain the voltage and current waveforms we used a 
data acquisition module (DAQ) NI USB-621, a signal 
conditioning PCB, and a data acquisition software 
developed in LabVIEW.  

The schematic of the signal conditioning board is 
presented in Fig. 1. The mains supply voltage was divided 
with a simple resistive voltage divider R1-R2, filtered by a 
2nd order RC filter and sent in differential mode to the input 
of the NI USB-621, to be converted to a digital signal with 
16 bits resolution. A current transformer with input/output 

ratio of 1000:1 and a maximum error of 1% was used as 
current sensor. The output voltage of the current 
transformer was also filtered by a 2nd order RC filter and 
fed into another differential channel of the data acquisition 
module and converted to digital with 16 bit resolution. 
 The two DAQ channels were configured with a 
conversion rate of 120 kS/s, and a full scale of ±200 mV. 
This configuration allowed us to measure voltages up to 
230 VRMS with 7 mVRMS resolution and current up to 15 ARMS 
with 458 µARMS resolution. 
 

 
Fig. 1. Conditioning board used in the measurement of voltage and 
current. 
 

A PC running a LabVIEW script was used to control the 
DAQ and store the measured data. After the data 
acquisition is finished, a MATLAB script was used to 
calculate the electrical parameters: rms voltage, rms 
current, active, reactive, and apparent powers, power 
factor, and the first harmonics of the current signal up to the 
25th. 

The effective voltage was calculated using the following 
equation: 

(1)                        ோܸெௌ 	ൌ ∑௩ටܩ	
௩ሾሿమ

ே
ே
ୀଵ 	 

where ோܸெௌ is the rms voltage, ܩ௩ is the voltage gain,		݊ is 
the sample index, ݒሾ݊ሿ is the nth voltage sample and ܰ the 
number of samples. The rms current is obtained by an 
analogous equation. 

Eq. (2) was used to calculate the active power. 

(2)                        ܲ ൌ ܩ ∗ ௩ܩ ∑
ሾሿ∗௩ሾሿ

ே
ே
ୀଵ  

In this equation, ܲ is the active power value and ܩ and 
 .௩ are, respectively, the current and voltage gainsܩ

The apparent power was calculated from the effective 
values of voltage and current using (3): 
(3)                              ܵ ൌ 	 ோܸெௌ ∗  ோெௌܫ

The reactive power was calculated from the active and 
apparent powers using (4): 
(4)                               ܳ ൌ 	√ܵଶ െ ܲଶ 

The power factor corresponds to the ratio of active 
power by the apparent power, as shown in (5): 

ܨܲ	                                    (5) ൌ


ௌ
 

The effective values of the harmonic components of the 
current signal were calculated using a formula based on the 
classical equation of the Discrete Fourier Transform [22,23], 
presented in (6): 

|ሾ݇ሿோெௌܫ|                (6) ൌ 	
ඥோሼூሾሿሽమାூሼூሾሿሽమ

ே
∗ ܩ ∗ √2 

where ݇ is the index of the harmonic component, 
 ሾ݇ሿோெௌ| is the rms value of the module of the kth harmonicܫ|
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and ܴ݁ሼܫሾ݇ሿሽ and ݉ܫሼܫሾ݇ሿሽ are, respectively, the real and 
imaginary parts of the kth harmonic component. 

Eq. (7) and (8) present the formulas used to calculate 
ReሼIሾkሿሽ and ImሼIሾkሿሽ. 

(7)                      ܴ݁ሼIሾkሿሽ ൌ 	∑ iሾnሿ ∗ cos ቀ
ଶ୩୬


ቁ	

୬ୀଵ  

ሾ݇ሿሽܫሼ݉ܫ                     (8) ൌ 	∑ ݅ሾ݊ሿ ∗ ቀ	݊݅ݏ
ଶగ

ே
ቁே

ୀଵ  

 
Experimental Procedure 

A representative group of residential appliances was 
selected based on the taxonomy proposed in [24]. This 
taxonomy is based on the division of the appliances in 
groups of similar electrical behavior, that is, present similar 
current waveforms. So, from [24], the families and with their 
respective typical appliances are: a) Resistive Appliances - 
incandescent bulb lamps, clothes iron; b) Pump-Operated 
Appliances - refrigerators, cold water dispensers; c) Motor-
Driven Appliances – fan; d) Electronic Appliances - 
microwave oven, LCD monitor, desktop computer, notebook 
computer, cell phone charger; e) Fluorescent Lightning - 
fluorescent lamps. 

We performed only steady state measurements with all 
these appliances. Each device was turned on and during a 
window of one second; both voltage and current signals 
were acquired. From the acquired data we calculated the 
rms voltage, rms current, power factor, active power, 
reactive power, apparent power, and the 25 first harmonics 
of the current signal. The parameters were calculated for 
each 60 Hz AC cycle (as the mains frequency in Brazil is 60 
Hz, 60 samples of each parameter were calculated per 
second). 
 

Results and Discussion 
 Table 1 presents the measured results of rms voltage 
(VRMS), rms current (IRMS), Active Power, Reactive Power, 
Apparent Power, and the Power Factor. The results in 
Table 1 are the average value of 60 measurements taken of 
each parameter with their respective standard deviation; the 
low deviations of all parameters indicates that they keep 
constant in steady-state operation, a desirable 
characteristic for parameters used to define load signatures. 
 

Table 1. Electrical parameters of the loads in steady state. 

Electrical 
Parameters 

VRMS   

(V) 
IRMS     
(A) 

Active 
Power 

(W) 

Reactive 
Power   
(Var) 

Aparent 
Power   

(Va) 

Power 
Factor 

 

Incandescent 
Lamp - 60 W 

124.65   
± 0.07 

0.49     
± 0.00 

60.93    
± 0.06 

2.01     
± 0.04 

60.96    
± 0.06 

1.00     
± 0.00 

Fluorescent 
Lamp - 13 W 

124.98   
± 0.23 

0.18     
± 0.00 

15.65    
± 0.04 

15.79    
± 0.06 

22.23    
± 0.07 

0.70    
± 0.00 

Fluorescent 
Lamp - 20 W 

125.37   
± 0.06 

0.30     
± 0.00 

23.59    
± 0.16 

29.69    
± 0.19 

37.92    
± 0.21 

0.62     
± 0.00 

LCD        
Monitor 

126.39   
± 0.13 

0.41     
± 0.00 

35.06    
± 0.27 

37.40    
± 0.28 

51.26    
± 0.24 

0.68     
± 0.00 

Desktop     
PC 

125.85   
± 0.14 

0.75     
± 0.01 

60.44    
± 0.60 

72.03    
± 0.58 

94.02    
± 0.80 

0.64     
± 0.00 

Fan 
126.90   
± 0.09 

0.29     
± 0.00 

36.72    
± 0.06 

5.69     
± 0.03 

37.16    
± 0.06 

0.99     
± 0.00 

Clothes Iron 
116.06   
± 0.11 

7.97     
± 0.01 

924.06   
± 1.74 

15.51    
± 0.24 

924.19   
± 1.74 

1.00     
± 0.00 

Microwave 
Oven 

114.19   
± 0.10 

10.54    
± 0.02 

1043.93  
± 2.96 

601.27   
± 0.87 

1204.70
± 2.58 

0.87     
± 0.00 

Refrigerator 
123.09   
± 0.15 

1.55     
± 0.00 

174.71   
± 0.30 

77.72    
± 0.36 

191.22   
± 0.28 

0.91     
± 0.00 

Water 
Cooler 

125.54   
± 0.14 

1.62     
± 0.00 

116.57   
± 0.53 

166.62   
± 0.37 

203.35   
± 0.40 

0.57     
± 0.00 

Laptop 
127.32   
± 0.10 

0.37     
± 0.01 

26.59    
± 0.99 

38.64    
± 1.02 

46.91    
± 1.39 

0.57     
± 0.01 

Cellphone 
(charging) 

126.61   
± 0.09 

0.09     
± 0.00 

7.12     
± 0.06 

8.87     
± 0.10 

11.37    
± 0.09 

0.63     
± 0.01 

As can be seen in Table 1, the power factor is an 
extremely useful parameter in defining load signature, 
especially to distinguish resistive loads from the others. In 
many cases, two (or more) appliances drain practically the 
same current, as the fan and the 20 W compact fluorescent 
lamp shown in Table 1 (which drain 0.30 ARMS and 0.29 
ARMS respectively). Nonetheless, these appliances present 
very different power factors (respectively 0.62 and 0.99) 
and, therefore, the power factor, together with the voltage, 
constitute the basic parameters of any NILM system. It is 
important to notice that since active power, reactive power, 
apparent power, and power factor are mathematically 
related through the power triangle, any pair of these 
quantities allows us to calculate the other two. Thus, only 
two of the four parameters are necessary in load 
recognition algorithms. 

The voltage signal is usually not used as a parameter 
for load identification, it is assumed that the voltage 
variations are negligible and do not affect the identification 
results. However, this signal is not a constant sine wave, it 
contains many harmonics coexisting simultaneously with 
their amplitudes varying over time. The European Standard 
EN50160 [25], establishes that the voltage magnitude can 
differ from the nominal voltage up to ±10%. This standard 
also stipulates the maximum limits for the voltage 
harmonics, that is from 1,5% to 6% of the fundamental for 
the first seven odd harmonics [25].  In addition to the 
distortion present in the power grid, internal factors on the 
residential circuit also generate harmonics in the voltage 
signal. Nonlinear loads draw non-sinusoidal current causing 
distortion in the mains ac voltage; especially when high-
power nonlinear loads are connected to the circuit. In our 
experiments, we observed significant voltage drops when 
high power loads, such as the cloth iron and microwave 
oven, was running, as can be observed in the first column 
Table 1. We also observed substantial voltage distortion 
caused by the microwave oven, as can be seen in Fig. 2 (a) 
and (b). The rms voltage variation and the presence of 
sporadic harmonics in the mains ac voltage changes the 
other the electrical parameters of all loads connected to the 
circuit, making difficult to identify their power signatures. 
Thus, the rms voltage and the harmonic content of the 
voltage signal must be measured to proper compensate this 
phenomenon. 
 Table 2 presents the calculated values of the odd har-
monics up to the 9th of the current signal measured for all 
appliances in steady state. As in the case of the other ele-
ctrical parameters, the presented results are average value 
and standard deviation obtained from 60 measurements. 
 

Table 2. First five harmonics in the current signal in steady state. 

Electric Current 
Harmonics 

1st 3rd 5th 7th 9th 

Incandescent 
Lamp - 60 W 

0.489     
± 0.000 

0.006     
± 0.000 

0.010     
± 0.000 

0.001     
± 0.000 

0.002     
± 0.000 

Fluorescent 
Lamp - 13 W 

0.130     
± 0.000 

0.085     
± 0.000 

0.051     
± 0.000 

0.040     
± 0.000 

0.037     
± 0.000 

Fluorescent 
Lamp - 20 W 

0.199     
± 0.001 

0.142     
± 0.001 

0.093     
± 0.001 

0.071     
± 0.001 

0.070     
± 0.001 

LCD         
Monitor 

0.286     
± 0.002 

0.222     
± 0.001 

0.152     
± 0.002 

0.081     
± 0.003 

0.032     
± 0.003 

Desktop        
PC 

0.495     
± 0.005 

0.413     
± 0.004 

0.310     
± 0.002 

0.197     
± 0.002 

0.089     
± 0.003 

Fan            
0.292     

± 0.000 
0.011     

± 0.000 
0.015     

± 0.000 
0.002     

± 0.000 
0.002     

± 0.000 

Clothes Iron 
7.963     

± 0.008 
0.132     

± 0.006 
0.164     

± 0.005 
0.023     

± 0.004 
0.045     

± 0.003 

Microwave    
Oven 

9.534     
± 0.026 

4.336     
± 0.022 

0.772     
± 0.026 

0.509     
± 0.012 

0.148     
± 0.008 
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Refrigerator 
1.537     

± 0.002 
0.166     

± 0.004 
0.116     

± 0.002 
0.078     

± 0.001 
0.030     

± 0.001 

Water 
Cooler 

1.617     
± 0.003 

0.086     
± 0.004 

0.047     
± 0.002 

0.004     
± 0.001 

0.015     
± 0.001 

Laptop 
0.216     

± 0.008 
0.180     

± 0.007 
0.154     

± 0.005 
0.125     

± 0.003 
0.093     

± 0.002 

Cellphone 
(charging) 

0.057     
± 0.001 

0.030     
± 0.001 

0.023     
± 0.001 

0.014     
± 0.001 

0.010     
± 0.001 

 
We found distinct patterns in the frequency spectrum of 

the current signal of the analyzed loads that can be used for 
load identification. Fig. 2 presents the voltage and current 
curves of a microwave oven both in time and in frequency 
domain. Among all loads examined, the microwave oven 
was the only one that presented a high absolute value of 
third harmonic (4.34 ARMS) in the current signal (see Fig. 2 
(d)). This unique feature can be used for distinguish this 
appliance.  

 

 
Fig. 2. Microwave oven voltage and current curves: (a) voltage in 
time domain (one cycle), (b) voltage in frequency domain, (c) 
current in time domain (one cycle) and (d) current in frequency 
domain. 
 

Fig. 3 shows the frequency spectrum of the current 
signal of two fluorescent lamps with different powers and 
different brands.  

Although the two lamps have slightly different 
signatures, both have similar patterns in frequency 
spectrum. Observe that in both graphics the 1st, 3rd and 
5th harmonics fall almost linearly, decreasing the slope in 
the 7th and remaining almost constant until the 9th 
harmonic. This distinct pattern can be used to identifying 
compact fluorescent lamps. 

As we can see in Fig. 4, the refrigerators also presented 
peculiar characteristics. Both appliances analyzed, a fridge 
and a water cooler presented 3rd and 5th harmonics with 
similar amplitude, much lower than the fundamental 
harmonic. 

 
Fig. 3. Current spectrum of two different fluorescent lamps: (a) 13 
W compact fluorescent lamp and (b) 20 W compact fluorescent 
lamp. 

 
Fig. 4. Current spectrum of two different refrigerators: (a) fridge and 
(b) water cooler. 

 
Fig.5. Current spectrum of: (a) a desktop computer, (b) a LCD 
monitor and (c) a laptop. 
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The LCD monitor, as well as the desktop PC presented 
very similar characteristics. In both loads, the first five odd 
harmonics have a downward linear behavior, as shown in 
Fig. 5. A similar characteristic was observed in the laptop 
but the downward linear behavior occurs with lower slope. 

Analysis of the Fig. 2 – 5 indicates that the first five odd 
harmonics contain the major information in frequency 
domain useful for load disaggregation of residential loads. 
The use of harmonics higher than the ninth do not 
considerably improve the load identification, moreover 
implicates in more computational power requirements. In 
fact, the computational power available and the complexity 
of the algorithms used to perform the load disaggregation 
are the limit factors to the choice of the harmonics. We also 
observed that there is no significant amplitude in the even 
harmonics, except in the microwave oven, that presented a 
0.620 ARMS second harmonic. Since the microwave has a 
very distinct signature there is no need to take in account 
even harmonics for load identification. 

 

Conclusion 
Although the first studies with NILM systems have 

started two decades ago, there was still no consensus of 
which electrical quantities are the most adequate for load 
disaggregation. In this work, we presented an analysis of 
the most used electrical parameters and concluded which 
ones are the best for use in NILM.  

We observed that the most useful information in the 
frequency domain for load identification is in the first five 
odd harmonics of the current signal. Using higher 
harmonics will not substantially increase the identification 
accuracy. Distinct patterns were identified on the current 
spectrum of some residential loads (microwave oven, 
fluorescent lamps, refrigerators, and personal computers), 
what confirms the potential use of spectrum analysis on 
load identification. 

The voltage signal is usually not considered as a 
parameter for load identification since it is assumed that the 
voltage variations are negligible and do not affect the 
identification results. We verified in our experiments that it is 
not true. Variations on voltage signal and the presence of 
harmonics makes the load identification imprecise, 
especially for loads with similar signatures, as electronics, 
culminating in misidentification. Thus, we concluded that the 
voltage must be used as parameter to improve the accuracy 
and robustness of the load monitoring system. 
 Power factor, or optionally the active and reactive 
powers, shown to be good parameters to distinguish 
resistive loads from the others (capacitive, inductive and 
non-linear), so they should also be used in the load 
disaggregation. 
 

The authors would like to acknowledge the financial support 
granted by the Brazilian agency CAPES, and 
generous donations of electronic parts by Analog Devices. 
 

REFERENCES 
[1] Meehan, P., McArdle, C., Daniels, S. An Efficient, Scalable Time-

Frequency Method for Tracking Energy Usage of Domestic 
Appliances Using a Two-Step Classification Algorithm. Energies ,7 
(2014), 7041-7066. 

[2] Zoha, A., Gluhak, A., Imran, M.A., Rajasegarar, S. Non-Intrusive 
Load Monitoring Approaches for Disaggregated Energy Sensing: A 
Survey. Sensors, 12 (2012), 16838-16866. 

[3] Leeb, S.B. A conjoint pattern recognition approach to non-intrusive 
load monitoring, Ph.D. Thesis, Dept. Elec. Eng. & Comp. Sci., 
Massachusetts Inst. Technol., (1993). 

[4] Chang, H.H., Chen, K.L., Tsai, Y.P., Lee, W.J. A New 
Measurement Method for Power Signatures of Nonintrusive 
Demand Monitoring and Load Identification.  IEEE Trans. on 
Industry Applications, 48 (2012), 764-771. 

[5] Huang, S.J., Hsieh, C.T., Kuo, L.C., Lin, C.W., Chang, C.W., Fang, 
S.A. Classification of Home Appliance Electricity Consumption 

Using Power Signature and Harmonic Features. In IEEE Ninth 
International Conference on Power Electronics and Drive Systems-
PEDS, pp. 596-599, (2011). 

[6] Cole, A., Albicki, A. Nonintrusive Identification of Electrical Loads in 
a Three-Phase Environment Based on Harmonic Content. In 
Proceedings of Instrumentation and Measurement Technology 
Conference, Baltimore, MD, USA, 1–4 May (2000), Volume 716, 
pp. 24–29. 

[7] Farinaccio, L., Zmeureanu, R. Using a pattern recognition approach 
to disaggregate the total electricity consumption in a house into the 
major end-uses. Energ. Build., 30 (1999), 245–259. 

[8] Hart, G.W. Nonintrusive appliance load monitoring. IEEE Proc., 80 
(1992), 1870–1891. 

[9] Duarte, L.F.C., Ferreira, E.C., Siqueira Dias J.A. Measurement 
Techniques for Energy Efficiency Programs. In Energy Efficiency - 
The Innovative Ways for Smart Energy, the Future Towards 
Modern Utilities, 1st ed., Eissa, M., Publisher: InTech,  Volume 1 
(2012), pp. 193-208. 

[10] Najmeddine, H., El Khamlichi Drissi, K., Pasquier, C., Faure, C., 
Kerroum, K., Diop, A., Jouannet, T., Michou, M. State of Art on 
Load Monitoring Methods. In Proceedings of the 2nd IEEE 
International Conference on Power and Energy Conference, Johor 
Bahru, Malaysia, 1–3 December (2008), pp. 1256–1258. 

[11] Norford, L.K., Leeb, S.B. Non-intrusive electrical load monitoring in 
commercial buildings based on steady-state and transient load-
detection algorithms. Energ. Build., 24 (1996), 51–64. 

[12] Patel, S.N., Robertson, T., Kientz, J.A., Reynolds, M.S., Abowd, 
G.D. At the Flick of a Switch: Detecting and Classifying Unique 
Electrical Events on the Residential Power Line In Proceedings of 
the 9th International Conference on Ubiquitous Computing, 
Innsbruck, Austria, (2007), pp. 271–288. 

[13] Robertson, D.C., Camps, O.I., Mayer, J.S., Gish, W.B. Wavelets 
and electromagnetic power system transients. IEEE Trans. Power 
Del., 11 (1996), 1050-1058. 

[14] Chang H.H. Non-Intrusive Demand Monitoring and Load 
Identification for Energy Management Systems Based on Transient 
Feature Analyses. Energies, 5 (2012), 4569-4589. 

[15] Liang, J., Ng, S.K.K., Kendall, G., Cheng, J.W.M. Load signature 
study Part I: Basic concept, structure, and methodology. IEEE 
Trans. Power Del., 25 (2010), 551–560. 

[16] Srinivasan, D., Ng, W., Liew, A. Neural-network-based signature 
recognition for harmonic source identification. IEEE Trans. Power 
Del., 21 (2006), 398–405. 

[17] Lee, K.D., Leeb, S.B., Norford, L.K., Armstrong, P.R., Holloway, J., 
Shaw, S.R. Estimation of variable-speed-drive power consumption 
from harmonic content. IEEE Trans. Energy Convers., 20 (2005), 
566–574. 

[18] Shaw, S.R., Laughman, C.R. A Kalman-Filter Spectral Envelope 
Preprocessor. IEEE Trans. Instr. and Meas., 56 (2007), 2010-2017. 

[19] Du L., Restrepo, J.A., Yang, Y., Harley, R.G., Habetler, T.G. 
Nonintrusive, Self-Organizing, and Probabilistic Classification and 
Identification of Plugged-In Electric Loads. IEEE Trans. On Smart 
Grids, 4 (2013), 1371-1380. 

[20] Hassam, T., Javed, F., Arshad, N. An Empirical Investigation of V-I 
Trajectory Based Load Signatures for Non-Intrusive Load 
Monitoring. IEEE Trans. Smart Grids, 5 (2014), 870-878. 

[21] Moro, J.Z., Duarte, L.F.C., Ferreira, E.C., Siqueira Dias, J.A. A 
Home Appliance Recognition System Using the Approach of 
Measuring Power Consumption and Power Factor on the Electrical 
Panel, Based on Energy Meter ICs. Scientific Research Circuit and 
Systems, 4 (2013), 245-251. 

[22] Cooley, J.W., Tukey, J.W. An algorithm for the machine calculation 
of complex Fourier series. Math. Comput., 19 (1965), 297–301. 

[23] Goertzel, G. An Algorithm for the Evaluation of Finite Trigonometric 
Series. American Mathematical Monthly, 65 (1958), 34–35. 

[24] Sultanem, F. Using Appliances Signatures for Monitoring 
Residential Loads at Meter Panel Level. IEEE Tran. on Power 
Delivery, 6 (1991), 1380-1385. 

[25] Markiewicz, H., Klajn A. Voltage Disturbances Standard EN 50160: 
Voltage Characteristics in Public Distribution Systems, 1st ed, 
Wroclaw University of Technology, Wroclaw, Poland, (2004), pp. 3-
4. 

 
Authors: MSc. Rodrigo Bacurau, MSc. Alex Dante, Dr. Luis Duarte 
and Prof. Dr. Elnatan Ferreira, Department of Semiconductors, 
Instruments and Photonics, School of Electrical and Computer 
Engineering, University of Campinas, Campinas, SP, Brazil. E-
mails: bacurau@demic.fee.unicamp.br, 
 alexdant@demic.fee.unicamp.br, 
 lfduarte@demic.fee.unicamp.br 
elnatan@demic.fee.unicamp.br 


