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computation of the power flow problem solution 

 
 

Abstract.  This paper investigates the use of iterative linear methods applied to the power flow problem (PFP) solution in power systems. 
Preconditioning techniques are studied and incorporated to the methodology to solve a linear system. As application to the PFP, four iterative linear 
techniques and a direct method are evaluated and their performances are compared. Numerical experiments demonstrate the effectiveness of the 
proposed methodology, suggesting the good performance of the Bi-conjugate Gradient Stabilized (BiCGStab) as an adequate iterative linear method 
for the applicability in the solution of a PFP. 
 
Streszczenie. W artykule analizowano metodę iteracyjną zastosowaną do kontroli przepływów mocy. Zbadano cztery liniowe  techniki iteracyjne i 
metodę bezpośrednią Najlepsze właściwości wykazała technika Bi-conjugated Gradient Stabilized BiCGStab. Oszacowanie możliwości liniowych 
metod iteracyjnych do kontroli przepływów mocy 
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Introduction 

Iterative solvers [1] have been usually used as a 
feasible option when the solution of a large-scale linear 
system by employing a direct method (based on full 
Gaussian elimination or full LU factorization) is 
computationally intensive. The power flow analysis in 
modern power systems is an example of this type of 
application. In most cases, the linear sub-problem derived 
from a nonlinear equation system derived from problems as   
power flow problem (PFP) is solved by using the traditional 
direct method [2]. However, according to the network 
complexity [3], or even the condition of the system of 
equations [4], the solution can be efficiently determined by 
iterative linear methods. 

There exist several techniques to determine the solution 
of an iterative linear system. But, depending on the system, 
the convergence to a stationary result can fail. Hence, 
iterative solvers usually need to be combined with 
appropriate preconditioning matrices in order to provide a 
good convergence rate [1]. Determination of a suitable 
preconditioner is not a trivial task since it depends on the 
problem at hand. A preconditioner which is proper for a 
specific problem often performs poorly in other systems; 
and, the investigation of general procedures to guide how to 
obtain a good preconditioner for each class of systems is 
subject of intense research [3]. In particular, for some tough 
problems, the direct methods are the unique viable option 
because or iterative solvers do not converge or, even 
though convergent, they are not competitive since obtaining 
an adequate preconditioner can be computationally more 
expensive than the use of a direct method. 

Iterative linear methods have been used to solve the 
power flower problem (PFP) [3],[5]. In this specific problem, 
the use of a preconditioner is mandatory, mainly because 
the Jacobian matrix associated to the problem is non-
symmetric. In general, in this problem the preference is for 
the solver Generalized Minimal Residual (GMRES). In this 
paper, we demonstrate and justify our preference for the 
method Bi-conjugate Gradient Stabilized (BiCGStab) [1].   

  This paper provides a systematic way to search for 
preconditioning matrices in the solution of hard sparse non-
symmetric systems derived from the power flow equations. 
Experiments on the power flow problem in power systems 
are used to illustrate the performance of the technique 
when it is applied to solve the set of nonlinear equations. 
The experiments are performed in four test-systems, 
including a Polish power system equivalent. 

Background Foundation 
A linear system 

 

(1)  bx A    with  A Թnn, x 	Թn, and b 	Թn, 
 

can be solved for the variable x by direct and iterative 
methods. The use of direct methods (Gaussian elimination) 
is the straightforward way of solving the system. However, 
iterative methods are more appropriate to large systems, 
especially if only an inexact solution is sought [3]. For non-
symmetric matrices, usually the iterative methods have poor 
convergence and preconditioning is necessary [1]. For each 
iterative solver one can consider left, right or split 
preconditioning. The left or right preconditioning (matrices 
PL and PR) mean, respectively, that it is iteratively solved 
the linear systems  
 

(2)  bx LL
11   PAP    or  byR 1AP , yx R

1 P . 
 

  If the preconditioners are chosen as the factors L and U 
of a matrix P whose product is P=LU, the problem consists 
in solving the two-sided preconditioned system [1] 
 

(3)  by 111   LAUL    and   yx 1 U . 
 

  For fast convergence, the preconditioner should 
resemble the coefficient matrix A and its inverse should be 
obtained without great complexity [1]. It is then usually 
chosen a target matrix P and constructed either a LU or an 
incomplete LU (ILU) factorization [1]. In the case of a full LU 
factorization, this leads to a preconditioner P=LUA. On the 
other hand, with the ILU factorization, the target matrix  
P=LU only resembles A. In this work, the ILU is preferred 
against the traditional LU, since it is intended a cheap 
iterative solver that can compete with the direct solver. A 
way to construct a target matrix P is by assigning to it sub-
matrices of A, dropping those sub-matrices defined as less 
dominant. Fortunately, some classes of problem have such 
peculiar characteristic and so the motivation of this paper 
will be lead for this kind of application.  

  A target matrix P can be generated by zeroing the less 
coupled sub-matrices in A. This matrix P has less nonzero 
elements than the original matrix A. However, according to 
our experience better target matrix will not be necessarily 
that with less nonzero elements but whose L and U factors 
present less nonzero elements. 
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  The performance (assessed by number of iterations and 
CPU time) of iterative methods preconditioned with ILU 
factors can be further improved if a reordering pre-
processing on A and b is carried out before performing the 
resolution of the linear system (3). The procedure consists 
in permutation operations in rows and columns of A [6]  
 

(4)  by LRL RARR     and   yx RR  
   

where the transformation matrices RL and RR are defined 
from the corresponding row and column permutations of an 
identity matrix of order n. Depending on the particular 
application, the best result is obtained by using one of the 
several reordering algorithms [1]. In this work, the influence 
of Reverse Cuthill-McKee (RCM) and Approximate 
Minimum Degree (AMD) methods [6] is evaluated. 

  Based on the above considerations, the proposed basic 
procedure to solve iteratively a linear system is  
 evaluate dominance of the sub-matrices of some matrix 
A partitions; 
 select a target matrix P among the matrices obtained 
after truncation of the less dominant sub-matrices of A; 
 obtain the reordering matrices RL and RR of A according 
to (4); 
 obtain the ILU factors, L and U, for the reordered matrix 
RLPRR; 
 apply an iterative solver with the L and U factors as 
preconditioner to the reordered system (4) to compute the 
solution x of the linear system (1). 
 
Iterative Linear Methods 

  An iterative linear method applied to (1) search a 
solution starting from an initial estimate x(0). As the 
technique is iterative, the result is said an inexact solution.  
We accept an inexact solution xx(k), if a given accuracy is 
reached for a defined numerical quality criterion. A stop 
criterion based on the relative residue at the iteration k, 
=||Ax(k)-b|| / ||b|| < 110-6 is adopted in this paper. 

  Methods exploiting characteristics based on Krylov 
subspace have been used in several applications, 
especially when the matrix A is non-symmetric [1]. A Krylov 
subspace is generated by a sequence of vectors forming a 
base defined as 

 

(4.1) },,,,{:),( )0(1)0(2)0()0()0( rrrrspanrK k
k

 AAAA  ,       
 

where r(0) is the residue calculated as r(0)=b-Ax(0). 
 The methods based on Krylov subspace to solve (1) 
consists in finding an approximate solution x(k) which is in a 
subspace formed by Kk. Assuming this premise, the solution 
must satisfy an error minimum norm condition, such that the 
original problem is  into the optimization problem 
 

 (4.2) }.:||min{|| 02
)(

k
k Kxxxx         

 

   Among several methods based on Krylov subspace, we 
can cite the GMRES, the Bi-conjugate Gradient (BiCG), the 
BiCGStab and the Conjugate Gradient Squared (CGS). 
These methods are adequate for systems with non-
symmetric matrix A, however each one has its intrinsic 
characteristics of convergence and robustness. 

  When an iterative method is employed to solve the linear 
sub-problem of a classical nonlinear PFP (see e.g. [3],[5]), 
usually the preference is given to the GMRES method. The 
Algorithm 1 is a procedure illustrating how the solution x by 
the GMRES can be computed for (1). In this algorithm, if the 
approximate solution x(m) does not satisfy the relative 
residue , the algorithm can be restarted by fixing x(0) as the 
value of x of the last iteration, i.e. x(0)=x(m) and continue until 

the convergence for the desired stop criterion. In some 
cases, even with restarting, the process is divergent for a 
pre-specified number of restarting. For this situation, a 
remedy is to expand the Krylov subspace or/and augment 
the number of restarting. But, a reordering and 
preconditioning process is the best option to obtain a fast 
convergence. In this paper we propose to use the method 
BiCGStab as an alternative to the use of the GMRES. As 
will be illustrated later, the BiCGStab when used for 
computation of inexact solution may be an adequate 
technique to solve iterative problems. We present the 
Algorithm 2 highlighting the main points which are 
necessary on the iterative process of BiCGStab. 
 
Algorithm 1 – GMRES used to solve Ax=b [1] 
INPUT: A, b and initial estimate x(0) 

OUTPUT: Solution x(m)

1. Compute r(0)=b-Ax(0), =||r(0)||2 and v1=r
(0)/ 

2. Do j=1,2, , while j  m  
3.    Calculate wj=Avj 

4.    Do i=1,2, , while i  j  
5.        Compute hij=<wj,vi>, where <wj,vi>=wj

Tvi and 
update  wj as wj:=wj+hijvi 

6.    End Do i  
7.    hj+1,j=||wj||2. If hj+1,j=0, do m=j and go to step 10 
8.    vj+1=wj / hj+1,j 
9. End Do j 
10. Define a Hessemberg matrix Hm of dimension 

(m+1)m, with entries Hm(i,j)=hij and a matrix  
Vm=[v1, v2,,vm] 

11. Calculate ym which minimize ||e1-Hmym||2 and obtain 
x(m) =x(0)+Vmym, where e1=[1, 0, , 0]T 	Թ(m+1) 

   
Algorithm 2 – BiCGStab used to solve Ax=b [1] 
INPUT: A, b and initial estimate x(0) 

OUTPUT: Solution x 
1. Compute r(0)=b-Ax(0), define p0

:=r(0) 

2. Do j=0,1,2, , until convergence  
3.  half iteration j=<r(j),r(0)>/<Apj,r

(0)>,       sj:=r(j)+jApj,  
  wj=<Asj,sj>/<Asj,Asj> 

4.   complement of the iteration x(j+1)=x(j)+jpj+wjsj, 
  r(j+1)=sj-wjAsj,   j=[<r(j+1),r(0)>/<r(j),r(0)>][j / wj] 

5.    pj+1=r(j+1)+j[pj-wjApj] 
6.    End Do j  
7. x=x(j+1)

   

 In this work we show that the a priori preference for the 
GMRES as linear iterative solver, as it is done in the most 
of the literature, is not justified. Other solvers besides 
GMRES can also be competitive with the direct method and 
even perform better. So, besides the GMRES and 
BiCGStab, we study two other techniques BiCG and CGS. 
For details about these methods, see for example [1].  
 

Power System Application 
 To analyze the applicability of the proposed 
methodology, it is considered the power flow problem in 
power systems. A detailed modeling of the mathematical 
and physical problem formulation can be found in [4]. 
Basically, this is a nonlinear problem which consists on 
determining the solution of the set of nonlinear equations  
 

(5)  1,,2,1,0),(),( nkVPPVP k
sp

kk          

(6)  2,,2,1,0),(),( njVQQVQ j
sp
jj          
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(7)  )]sin()cos([),( kmkm
km

kmkmmkk BGVVVP  


        

(8)        )]cos()sin([),( jmjm
jm

jmjmmjj BGVVVQ  


  

where =[1, 2,, n1]
T  Թn1 and V=[V1, V2,, Vn2]

T  Թn2	
are the unknow variables in the set of equations composed 
of (5) and (6). The variables Vi and i are the magnitude 
and phase angle of the voltage at bus i, respectively. The 
specified active power at bus of type PQ and PV and 

specified reactive power at bus PQ are sp
kP  and sp

kQ , 

respectively. Consequently, n1 is the number of PQ and PV 
bus, while n2 is the number of only PQ bus.  km stands for 
the deviation km=k-m. Gkm and Bkm are, respectively, the 
real and imaginary entries of the bus nodal admittance 
matrix, Ybus=G+jB. The symbol i means a subset of bus 
with physical connection at bus  i. The quantities Pk and  
Qj are known as mismatches of the equations (5) and (6), 
respectively.  Considering that this nonlinear system is 
solved iteratively, an acceptable solution is found if the 
maximum between max|Pk|, k=1,2,,n1 and  max|Qj|, 
j=1,2,,n2 reaches a value smaller than a given tolerance 
>0 sufficiently small. This characteristics give to the 
problem a nature of inexact solution. 
 Given an initial estimates (0) and V(0), an iteration q of 
the Newton-Raphson method applied to (5)-(6), starting with 

q=0, consists on to compute the solution )(q  and )(qV  
of a linear sub-problem of the type 
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 After computing the deviations (q) and V(q), then they 
are used to update the solution (q+1)= (q)+(q)  and V(q+1)= 
V(q)+V(q), until convergence (or not) of the Newton-
Raphson method for a maximum number of iterations. In 
case of convergence, other quantities are computed by 
using the values of the states (magnitude and phase angle 
of bus voltages). These other quantities, such as power at 
the swing bus, reactive power at PV bus, are calculated 
with computational burden much smaller than that for 
obtaining the states. Then, the interest to efficiently solve 
the linear sub-problem at each iteration is a key point on the 
solution of the PFP. 
 The linear sub-problem (9) will be rewritten as  
 

(11)    bx
Q

P

V































A

DC

BA 1     

where  and V are the unknown variables to be 
computed, i.e the variable x=[T, VT]T in (1), while  
b=[PT, QT]T represents the independent vector. Also, 
A1=H, B=N, C=M and D=L. It is noteworthy to mention in 
(11) that all sub-matrices are non-symmetric, although B 
and C have symmetrical structure. The physical knowledge 
of the power flow problem lead us to the study of the 
relative dominance among the matrices on the (P, ) and 
(Q, V) sub-problems. 
 

Strategy for Computing a Preconditioner 
 For the iterative linear sub-problems, we propose to use 
a preconditioner computed just along the first iteration of the 
nonlinear iterative process of the Newton-Raphson method.  

   To determine a preconditioner, we exploit the fact that 
the active power has stronger coupling with phase angle 
than with magnitude of bus voltage. Also, it is considered 
the fact that the reactive power is more sensitive to changes 
in the magnitude than phase angle of bus voltages. These 
physical characteristics of the power flow gave place to 
variants of the Newton method applied to this problem. 
Based on decoupling according to the aforementioned 
sensitivity characteristics, modifications known as 
decoupled Newton and fast decoupled Newton methods 
were proposed [3]. These insights suggest the study of the 
following structures of target matrix for precondiditioner: 

 

(12)   



























D0

BA
P

DC

0A
P

D0

0A
P 1

3
1

2
1

1 ,,     

 

  The target matrix P1 has structure whose block-diagonal 
sub-matrices are fully decoupled with relation to the off-
diagonal sub-matrices. In this sense, the preconditioners P2 
and P3 are partially decoupled. Another fourth option is to 
employ the own A as preconditioner.  However, this option 
will be generate factors L and U with greater number of 
nonzero entries than those structures proposed in (12).   

  The Algorithm 3 summarizes the schema for computing 
a solution of the power flow problem when an iterative linear 
solver is employed.   In this algorithm, the stop condition is 
in the step 4, case convergence be reached; or in the step 
6, if the maximum number of iterations for the nonlinear 
loops be surpassed. We are assuming that the algorithm is 
convergent. Then, at the end of it the states  and V are 
calculated. Our focus in this paper is to evaluate the 
performance of some iterative linear methods to compute 
these states and compare against the performance of the 
traditional direct method.   

 

Numerical Experiments and Results 
   To analyze the applicability of the proposed 

methodology numerical experiments were carried out on 
test-systems of four power systems. The smallest system is 
the well known IEEE 118-bus system. The biggest is a 
Polish equivalent system representing the Polish 400 kV, 
220 kV and 110 kV networks during the winter 2007-2008 
evening peak conditions (for details of this test-system, see 
the file case3375wp.m obtained from [7]). The system has 
3374 buses, with 2982 load and 392 generation buses. Two 
other intermediate-sized systems are the IEEE 300-bus and 
a 319-bus Brazilian equivalent network related to the year 
1987. 

 
Algorithm 3 – Iterative linear method for the PFP 

INPUT: Network data, x(0), H, N, M, L and   
OUTPUT: States  and V 
1. Compute P(0), Q(0), H(0), N(0), M(0) and L(0); perform 

reordering in A, as in (4) to determine RL and RR; 
reorder A and b in (4) to form Ar=RLARR, br=RLb, and 
the linear system Arxr=br. Compute x=RRxr. 

2. Define P as in (12); reorder P with the same matrices 
RL and RR computed in the step 1 and calculate  
Pr= RLPRR . Calculate the ILU factors L and U of Pr.  

3. Solve iteratively, as in (3), the linear system Arxr=br 
with the factors L and U obtained in the step 2. After, 
compute the original solution x and do q:=1. 

4. Compute P(q), Q(q), and test for convergence of the 
Newton-Raphson method. In case of convergence, do  
x=[T, VT]T and stop; else, continue. 

5. Compute A1=H(q), B=N(q), C=M(q), D=L(q); form A and b 
according to (11), reorder them with the permutations 
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matrices obtained in the step 1, and then use the  
factors L and U of the step 2 to solve iteratively the 
updated linear system Arxr=br and calculate x. 

6. Do q:=q+1 and return to the step 4, while q do not 
surpass a pre-specified number of iterations.  

   

   In the first part, the studies aimed to determine the best 
preconditioner associated to the PFP. We propose to 
compute P and its ILU factors L and U only for the first 
iteration of the Newton-Raphson process. Then, these 
factors are kept and used in the subsequent iterations as 
preconditioner for solving the linear systems. Due to brevity 
of space in this paper, just results concerning the biggest 
test-system will be presented. In the second part, 
performance of iterative methods for computing the solution 
of the PFP (the nonlinear problem) are evaluated and 
compared with the performance of the direct method. 

   All simulations were accomplished in an Intel (R) coreTM 
2Duo processor notebook, 32 bits, clock of 1.66 GHz and 2 
GB of RAM. The experiments were carried out by using the 
software Matlab R2009b. We have used the own Matlab’s 
linear solver scripts to compute the solution related to the 
direct and iterative methods.   
 

Preconditioner studies  
   The matrix A in (11), as well as the vector b for the 

Polish test-system was computed for the first iteration of the 
Newton-Raphson process. The linear system formed this 
way was utilized to study the influence of a preconditioner 
when iterative methods are employed. The matrix A has 
dimension 63556355 and 40704 nonzero entries. 

    Besides the performance of some iterative methods, 
the influence of three types of preconditioner as presented 
in (12) were investigated. 

    For all simulations, it is assumed initial value x(0)=0 and  
stop criterion  less than 10-6. The CPU times in this work 
are the average of the values obtained in 500 repeated 
experiments using tic and toc MATLAB commands. As 
first experiment, it was performed a direct application (no 
preconditioner) of the iterative methods GMRES, CGS, 
BiCG and BiCGstab [1]. None provided a satisfactory 
convergence behavior. Then, we considered the natural 
partition of the matrix A in (11), and performed a relative 
dominance analysis by dropping submatrices B or (and) C.   

    Applying each target matrix (P1, P2 or P3) directly as left 
or right preconditioner as in (12), the system converges but, 
all iterative methods are much slower than the direct 
method. Next we considered the two-sided preconditioning 
with ILU factorization, as in (3). The ILU factorization 
depends on a rule to form L and U and a parameter known 
as drop tolerance  [8]. The drop tolerance is a quantifier 
which gives a metric to approximate a nonzero entry by a 
null value. This way, L and U can be constructed in such 
way to fully preserve the same sparse structure of A. This 
situation is known as ILU(0) and it is characterized by 
factors L and U whose number of nonzero entries is the 
smallest. The extreme case occurs when L and U are the 
same matrices obtained from a full LU factorization of A. 
The factorization with such pattern is known as ILU(n). In 
practice, these two extreme situations are of little interest, 
since ILU(0) provides poor quality of convergence, while 
ILU(n) is similar to the classical Gaussian elimination 
technique. Then an intermediate strategy must be 
preferred. But, this intermediate candidate, called ILU(k) is 
dependent of .  In view of these aspects, we investigate 
the influence of the drop tolerance, when a kind of ILU(k), 
called ILUT() [8] is applied. The study also considered the 
reordering of x. Numeric experiments were performed for 

several values of . According to [1], a range of values of  
from 10-5 to 10-4 is suggested. Typical results obtained for 
=6.510-5 and considering experiments with AMD and 
RCM ordering are shown in Tab. 1. The method 
performance with no reordering is much worst and so the 
results were omitted in the table. 
 

Table 1. Number of iterations and timing, in seconds 
Reord. 

Type 
Method 

Iterations Timing 

P1 P2 P3 P1 P2 P3 

RCM 

GMRES 3/1 6/5 2/3 0.044 0.118 0.036

BiCGstab 8 13 4.5 0.031 0.057 0.024

BiCG 13 16 9 0.068 0.095 0.060

CGS 8 12 5 0.031 0.056 0.023

AMD 

GMRES 2/5 2/3 2/1 0.034 0.028 0.023

BiCGstab 8.5 5 3.5 0.031 0.020 0.015

BiCG 12 9 8 0.054 0.043 0.044 

CGS 9 7 4 0.032 0.027 0.017

 

   In all cases, we used the ILUTP method with diagonal 
pivoting and row sum preservation [8]. In the Tab. 1, at 
‘Iterations’ columns, the results are the number of iterations 
required when L and U factors of ILU of P1, P2 or P3 are 
used. The notation k/m in the GMRES column refers to 
number of external loop iterations (m) and number of 
restarts k. The BiCGstab is counted by half iterations.  
 

 
Fig. 1. Timing for different drop tolerances for preconditioner with 
target matrix P3 

 
Fig. 2. Timing for solving the PFP 
 
     Using only ILU (without reordering), the iterative 
methods spent less CPU time than in the previous 
experiments with pure left or right preconditioning. 
However, all of them remained much slower than the direct 
method, which demands 0.046 s of CPU time.  Applying 
reordering, the results are more robust against variations on 
. Its influence for each Pi, i=1,2,3 were investigated.  Fig. 1 
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illustrates the total CPU time against  when a 
preconditioner is based on a target matrix P3. Only AMD 
reordering is used. One can see that the tuning of the drop 
tolerance becomes noncritical on the performance of each 
iterative method. Our experiments showed that, with P1 or 
P2, no iterative method is preferable over the others since 
none was systematically faster in all  intervals. The AMD 
reordering performed better than the RCM for all target 
matrices. Consistently to this fact, experiments showed 
lower number of nonzero elements of the L and U factors of 
the reordered matrix when AMD is used. The lowest CPU 
time consumption (0.015 s) is obtained for the BiCGstab 
method using ILU factors of P3 as preconditioner with AMD 
reordering (see Tab. 1). This result is approximately 33%  of 
the CPU time of the direct method with reordering (0.046 s). 
In the literature, it is very common to use GMRES and P1[2]. 
Our methodology enabled us to find a less natural target 
matrix, P3, and iterative solver, BiCGstab, with better results 
than the direct method and GMRES with P1. 
 
Power Flow Experiments 
 In this section, we present results about experiments in 
four systems, the iterative linear methods and the direct 
method. A base case of the PFP was studied with 
reordering AMD and using the preconditioner P3. A 
=2.510-5 and =10-4 were used. For each system a mean 
of four iterations were necessary to convergence. The CPU 
time for each system and method is shown in Fig. 2. We 
observe that for the two smaller systems the performances 
of all methods are similar.  But, there is difference of 
performance among the methods for the two biggest 
systems. The best performance for the biggest system 
(Polish system) is attributed to the method BiCGStab. The 
Method CGS has presented similar performance. The worst 
performance was observed for the direct method, being 
required about 0.21 s of CPU time, against only 0.098 s of 
the method BiCGStab. This result represents a difference t 
of about 121%. The method GMRES, usually used in many 
applications, demanded 0.14 s, a t about  46% higher in 
relation to the BiCGStab. 
 Based on these results, the larger the system, the 
greater the difference of CPU time between the method 
BiCGStab and the direct method. 
 
Conclusions 
 This paper presented  a method to determine a solution 
of the power flow equations based on the use of technique 
for iterative linear systems.  The methodology requires the 
computation of a preconditioner whose results have 
demonstrated that the best option occurs when the 
decoupling of the reactive power with the phase angle of 
the voltage bus is considered. It was studied four iterative 

methods and compared their performance with the direct 
method (based on Gaussian elimination). It was verified that 
the best performance is observed when a reordering 
process of AMD type is employed jointly with the method 
BiCGStab. We also demonstrate through simulations that 
for inexact solution of linear systems, as required at each 
iteration of the Newton-Raphson process, the method 
BiCGStab has better performance than the GMRES.  
  The proposed approach applied to the linear sub-
problem associated to the power flow can furnish a 
significantly faster iterative solver than the usual ones. The 
method is general, has low computational cost and might be 
used as a viable candidate for tough large systems where 
the usual direct and iterative methods are limited. 
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