
PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 92 NR 12/2016                                                                                      49 

Paweł JABŁOŃSKI, Dariusz KUSIAK, Tomasz SZCZEGIELNIAK, Zygmunt PIĄTEK 

Czestochowa University of Technology 
 

doi:10.15199/48.2016.12.13 
 

Reduction of impedance matrices of power busducts 
 
 

Abstract. A general method of reduction of self and mutual impedance matrix of a busduct system with busbars in parallel or series is described. 
The method allows us finding the impedance matrix of a reduced system when given the impedance matrix of the busbars or their fragments. It can 
be also used in optimization of certain features of impedance matrix of the reduced system. 
 
Streszczenie. Rozważono ogólną metodę redukcji macierzy impedancji własnych i wzajemnych układu szynoprzewodów połączonych równolegle 
lub szeregowo. Pozwala ona znaleźć macierz impedancji układu zredukowanego dla zadanej macierzy impedancji szynoprzewodów cząstkowych. 
Może być także stosowana do optymalizacji pewnych cech macierzy impedancji. (Redukcja macierzy impedancji torów prądowych). 
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Introduction 
There are situations when an existing power busduct 

has to be expanded or rearranged due to modernization of 
receivers or changes in supply system. When the busduct 
consists of many busbars that can be connected in various 
ways it is worth to select the best one with respect to certain 
criterion. Some possible criterions are the lowest power 
losses in the busduct at a given transferred power, the 
lowest voltage drops, and so on. In a single phase systems 
the obvious criterion is the smallest module of the busduct 
impedance. It is desirable to be able to recalculate quickly 
various variants of busbar arrangement to select the most 
appropriate one. A similar situation takes place for a newly 
designed busduct with many busbars. The method 
described here uses the general approach to calculation the 
impedance matrix of a reduced system when the full 
impedance matrix is given.  
 
The self and mutual impedance matrix 

Let us consider a system of n busbars that can be 
regarded as magnetically coupled two-terminals (Fig. 1).  

 
Fig.1. A system of n magnetically coupled two-terminals 

 
If they carry currents whose phasors are I1, I2, …, IN, 

then the voltage between the terminals of i-th busbar equals 
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where Zij is the mutual impedance between two-terminals i 
and j (when j ≠ i) and the self impedance of two- terminal i 

(when j = i). The above equation system can be written in 
matrix form as follows: 

(2) ,ZIU   

where U = {Ui}n and I = {Ii}n are the vectors of voltages and 
currents, respectively, connected with each two-terminal, 
and Z = [Zij]n×n is the self and mutual impedance matrix of 
the system. The impedance matrix can be determined in 
measurements or via theoretical considerations (e.g. [1-
10]). The admittance matrix is defined as Y = Z–1. 
 
System reduction 

Suppose we know matrix Z. Let the two-terminals be 
grouped in m groups, and connected either in series or in 
parallel, but in the same way throughout the whole system 
(Fig. 2). In this manner, we obtain a reduced system of m 
two-terminals. Our goal is to determine Z′ = [Z'kl]m×m – the 
equivalent matrix of self and mutual impedances of the 
reduced system. Notation i∈k will be used to denote that 
component i belongs to group k. 

 
Fig.2. Reduction of n two-terminals system into m two-terminals one 

 

Reverse connection 
Suppose we know matrix Z of an n two-terminals system 

and consider the same system in which k-th two-terminal is 
connected in a reverse way (Fig. 3).  

 

 
Fig.3. Reverse connection of a two-terminal 
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Obviously, in the new system U′k = –Uk and I′k = –Ik, and 
the remaining voltages and currents are the same in both 
systems. Therefore, we have 

(3) ,)(,)( IRIURU kk   

where R(k) is a diagonal matrix with –1 on k-th position and 
+1 otherwise. Since R(k)–1 = R(k), we have I = R(k)I′, and 
therefore U′ = R(k)ZI = R(k)ZR(k)I′. Hence, 

(4) ).()( kk ZRRZ   

Matrix Z′ has the same elements as Z except for k-th 
column and k-th row, in which the elements have opposite 
signs with exclusion of the diagonal, which is the same as in 
the original matrix Z. In general, if there are several reverse 
connections in the system, the resulting impedance matrix 
can be obtained as follows: start with the original matrix Z 
and for each reversely connected two-terminal, change the 
sign of impedances in the corresponding row and then in 
the corresponding column (so the diagonal will remain 
unchanged). 

As an example, consider three coupled windings (e.g. in 
an air transformer) of impedance matrix Z = [Zij]3×3. If we 
interchange the terminals in the first winding, the 
impedance matrix will be as follows: 
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Series connection 
Let the components in each group be connected in 

series (Fig. 4). The voltage on group k equals the sum of 
voltages on components belonging to the group, whereas 
the current in k-th group is the same in all components. It is 
worth to take into considerations the possibility that a two-
terminal can be connected into the group in a regular or 
reverse way (Fig. 5). Then the voltages on particular 
components should be taken with sign plus (regular 
connection) or minus (reverse connection). Notation i∈+k 
and i∈–k will be used for regular and reverse membership of 
i-th two-terminal in group k, respectively. Let us introduce 
connection matrix C = [Cki]m×n, the elements of which are 
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Fig.4. Group k connected in series 

 

 
Fig.5. Regular and reverse series connection 

Then the relationships between the voltage and current 
vectors of the original and resulting system can be 
expressed as 

(7) ., ICICUU  T  

Using the above relationships, we have U′ = CU = CZI = 
CZCTI′, and hence 
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In scalar form we have 

(9) .)(
1 1

  
  


ki lj

ij

n

i

n

j
jlijkikl ZCZCZ  

The second form is a result of the fact that CkiCjl only takes 
a non-zero value when component i belongs to group k and 
component j belongs to group l at the same time. Moreover, 
CkiCjl equals then either +1 or –1, depending on whether 
components i and j are connected in a similar way (either 
regular or reverse) or different way (one regular and the 
other reverse), respectively. 

As an example, consider two coils in series connected in 
similar or dissimilar way. We have C = [1  ±1], and hence 
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This stays in agreement with the well-known formula for 
impedance of two magnetically coupled coils. 
 
Parallel connection 

Consider the case in which the components of each 
group are connected in parallel (Fig. 6). The total current of 
group k equals the sum of currents in particular two-
terminals belonging to the group. The currents of particular 
components should be taken with sign plus for regular 
connection or minus for reverse connection (see Fig. 7).  
 

 
Fig.6. Group k connected in parallel 
 

 
Fig.7. Regular and reverse parallel connection 
 
Observe that the following relationships hold in this case: 

(11) UCUCII  T,  

so that we obtain I′ = CI = CYU = CYCTU′, and therefore, 
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Hence, the impedance matrix equals 
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It should be noted that the admittance matrix of the reduced 
parallel system is related with the admittance matrix of the 
full system in the same way as the corresponding 
impedance matrices for series connections – see Eqs. (8) 
and (12). 

As an example, consider two magnetically coupled coils 
in parallel. They can be connected in a similar or dissimilar 
way, i.e. C = [1  ±1], and therefore, 

(14) 
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This result stays in agreement with the well-known formula 
for equivalent impedance of two coupled coils in parallel. 
 
Example of application 

The considered method uses extensively matrix 
operations; therefore, larger systems usually require 
appropriate computer software. To demonstrate the 
method, we consider below a relatively simple system. It 
consists of a single phase power busduct with 4 busbars 
supplying certain load. The busbars are arranged in two 
buses, each with 2 busbars (Fig. 8). Our goal is to find out 
the reduced impedance of the busduct, ZB.  
 

 
Fig.8. Single phase busduct with two busbars per bus supplying a 
load and its two-terminal representation (full and reduced) 
 

Let the impedance matrix of the four busbars alone be Z 
= [Zij]4×4. This matrix can be found via various computational 
methods, e.g. [1,3,9,10]. Matrix Z is symmetrical, therefore 
the admittance matrix, Y = [Yij]4×4 = Z–1, is also symmetrical. 
Denote Yij as zij/|Z|, where zij is cofactor of element Zij in 
matrix Z. Let busbars 1 and 2 compose group 1 and 
busbars 3 and 4 – group 2. The busbars are connected in 
parallel in each group, and the connection is regular. 
Therefore, the connection matrix has the following form: 
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Then the impedance matrix of the reduced busduct equals 
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We have now the two groups connected in series as a 
higher order group. This time the connection is reverse, 
therefore the connection matrix is C′ = [1  –1], and Z″ = 
C′Z′C′T. Matrix Z″ has only one element equal to 
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This formula simplifies in case of certain symmetry. If we 
assume symmetrical buses (Z11 = Z44, Z22 = Z33, Z34 = Z12 and 
Z24 = Z13), then the busduct impedance will be 
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If in addition Z22 = Z11 and Z23 = Z14, then 
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Formula (20) is very similar to the one for two coupled 
coils in parallel. In fact, the original electric diagram can be 
reduced to such equivalent parallel impedances via the 
method of coupling elimination together with symmetry 
assumptions (see Fig. 9). The original connection is shown 
briefly in diagram 1. It is redrawn with the load shifted 
outside the busduct in diagram 2, and a balanced bridge 
(due to symmetry) is obtained. This fact is used to remove 
the dashed branch. Then couplings 1-3 are replaced with 
equivalent negative ones (diagram 3). In diagram 4, 
couplings 1-4 and 2-3 are eliminated, and a shunt is 
inserted (dashed line), which does not affect current flow 
due to symmetry. We have then two identical segments, 
each of them being a parallel connection of coupled 
impedances Z11 – Z14 and Z22 – Z23 with mutual impedance 
Z12 – Z13. This stays in agreement with Eq. (20). 
 

 
Fig.9. Reducing the considered busbar system via coupling 
elimination in case of symmetrical buses 
 

Eq. (20) allows us determining how to connect the 
busbars (within given geometry) to obtain the impedance 
module |ZB| as low as possible. Mutual impedances usually 
are nearly inductive; therefore, 
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If coupling 1-2 (and the same 3-4) is stronger than coupling 
1-3 (and the same 2-4), the equivalent coupling 1-2 and 1-3 
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(impedance Z12 – Z13) is positive, otherwise it is negative. 
Since two coupled coils in parallel have lower impedance 
for negative coupling, we expect that |ZB| would be lower if 
X13 > X12, i.e. if the coupling between the busbars belonging 
to one bus is weaker than the coupling between busbars 
from different buses. This result is confirmed directly via 
field calculations performed with FEMM software [11]. The 
first row of Table 1 shows some exemplary configurations of 
4 busbars of rectangular cross sections. The busbars can 
be arranged in pairs 12-34, 13-24 and 14-23. The full 
impedance matrix was calculated with FEMM. The reduced 

impedance matrix was calculated both with FEMM as well 
as via system reduction, and full agreement was achieved. 
Small discrepancies appear in further significant figures (not 
given in Table 1) due to numerical errors introduced by the 
finite elements method used in FEMM software. We 
assumed the busbars are made of copper (conductivity 58 
MS/m) and the cross section dimensions are 4 cm × 1 cm. 
They are placed in air and frequency is assumed to be 50 
Hz. Distance between the busbars, d, is given in Table 1 for 
each configuration. 

 
Table 1. Impedances of selected configurations of 4 identical busbars (each busbar is made of copper and has a rectangular cross-section 
4 cm × 1 cm; impedances are calculated for a frequency of 50 Hz and expressed in μΩ/m; distance between busbars is given in row 2) 

Configuration 

  
 

d 1 cm 1 cm 1 cm 4 cm 4 cm 
The impedance matrix of 4 busbars calculated with FEMM 

Z11 = Z44 47.33 + j398.6 50.72 + j395.7 51.61 + j394.2 48.18 + j397.1 49.04 + j396.2 
Z22 = Z33 48.37 + j398.3 53.79 + j393.1 51.61 + j394.2 48.18 + j397.1 49.04 + j396.2 
Z12 = Z34 2.70 + j350.1 1.57 + j308.7 6.33 + j345.8 0.18 + j298.7 2.00 + j296.8 
Z13 = Z24 0.59 + j315.7 –2.76 + j265.6 –1.33 + j303.9 –1.93 + j277.4 1.54 + j276.4 

Z14 –0.51 + j292.8 –4.00 + j240.1 –1.14 + j310.3 0.18 + j298.7 2.00 + j296.8 
Z23 3.11 + j350.0 2.79 + j307.8 –1.14 + j310.3 0.18 + j298.7 2.00 + j296.8 

Impedance ZB for arrangement 12-34 calculated with FEMM and Eqs. (19), (20), (21) 
ZB12-34 FEMM 57.5 + j101.3 63.2 + j151.4 60.4 + j125.7 50.1 + j119.7 47.5 + j119.8 
ZB12-34 Eq.(19) 57.5 + j101.3 63.2 + j151.4 60.4 + j125.7 50.1 + j119.7 47.5 + j119.8 
ZB12-34 Eq.(20) 57.5 + j101.3 63.2 + j151.4 60.4 + j125.7 50.1 + j119.7 47.5 + j119.8 
ZB12-34 Eq.(21) not applicable not applicable 60.4 + j125.7 50.1 + j119.7 47.5 + j119.8 

Impedance ZB for arrangement 13-24 calculated with FEMM and Eqs. (19), (20), (21) 
ZB13-24 FEMM 46.6 + j36.2 50.2 + j70.3 45.1 + j42.0 45.9 + j77.2 46.6 + j79.0 
ZB13-24 Eq.(19) 46.6 + j36.2 50.2 + j70.3 45.1 + j42.0 45.9 + j77.2 46.6 + j79.0 
ZB13-24 Eq.(20) 46.6 + j36.2 50.2 + j70.3 45.1 + j42.0 45.9 + j77.2 46.6 + j79.0 
ZB13-24 Eq.(21) not applicable not applicable 45.1 + j42.0 45.9 + j77.1 46.6 + j79.0 

Impedance ZB for arrangement 14-23 calculated with FEMM and Eqs. (19), (20), (21) 
ZB14-23 FEMM 45.9 + j54.0 52.8 + j94.1 45.5 + j54.7 50.1 + j119.7 47.5 + j119.8 
ZB14-23 Eq.(19) 45.9 + j54.0 52.8 + j94.1 45.5 + j54.7 50.1 + j119.7 47.5 + j119.8 
ZB14-23 Eq.(20) not applicable not applicable 45.5 + j54.7 50.1 + j119.7 47.5 + j119.8 
ZB14-23 Eq.(21) not applicable not applicable 45.5 + j54.7 50.1 + j119.7 47.5 + j119.8 
 
Conclusions 

A systematic method of obtaining impedance matrices 
of reduced systems was described. The method uses 
matrix operations; therefore, it works best on numerical 
values and with computer software. It is helpful in finding 
the impedance matrices for various arrangements of 
busbars. It can be used in optimization of certain features of 
impedance matrices for a given geometry. It is also used 
implicitly in certain integral methods for numerical 
determination of the impedance matrix, e.g. [1]. 
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