
PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 92 NR 12/2016                                                                          271 

Jerzy GOŁĘBIOWSKI, Jarosław FORENC 

Politechnika Białostocka, Wydział Elektryczny 
 

doi:10.15199/48.2016.12.68 
 

The influence of side thermal insulation on distribution  
of the temperature field in an electrical floor heater 

 
 

Abstract. Two models of side thermal insulation (adiabatic and lossy) were examined in the analysis of the operation of electrical floor heater. 
Temperature field distributions obtained in both cases were compared. Computation costs of consideration of edge effects resulted from insulation 
lossiness were estimated. The use of parallel operation of a traditional processor (CPU) and a graphics processing unit (GPU) enabled  
a significant reduction of the computation time. 
 
Streszczenie. W analizie pracy elektrycznego grzejnika podłogowego rozpatrywano dwa modele bocznej izolacji termicznej (idealnej i rzeczywistej). 
Porównano rozkłady pola temperatury wyznaczone w wymienionych przypadkach. Oszacowano obliczeniowe koszty uwzględnienia efektów 
krawędziowych spowodowanych stratnością izolacji. Zastosowanie równoległej pracy tradycyjnego procesora (CPU) oraz procesora karty graficznej 
(GPU) umożliwiło znaczne skrócenie czasu obliczeń numerycznych. (Wpływ bocznej izolacji termicznej na rozkład pola temperatury  
w elektrycznym grzejniku podłogowym) 
 
Keywords: electric floor heating, transient temperature field, lossy thermal insulation, parallel computations, GPGPU 
Słowa kluczowe: elektryczne ogrzewanie podłogowe, nieustalone pole temperatury, stratna izolacja termiczna, obliczenia równoległe, 
GPGPU. 
 
 
Introduction 

Numerical simulations are very important in the analysis 
of physical phenomena. Among others, they enable the 
analysis of complex problems without analytical solution or 
with analytical solution that is difficult to obtain. Numerical 
simulations also limit the necessity to build expensive 
prototypes and experiment with them [1]. Carrying out 
numerical simulations requires the development of an 
appropriate mathematical model of analysed phenomenon. 
This model should reflect reality as much as possible and, 
at the same time, it should allow obtaining results of the 
simulation within a reasonable time. For this reason, 
practical models are often applied with simplifying 
assumptions that reduce the cost of obtaining numerical 
solutions. Such a problem can be seen, among others, in 
the analysis of thermal phenomena occurring in floor 
heating systems [2, 3]. Electrical, water and air floor heaters 
share a similar construction [3]. Essential part of a floor 
heater is a layer of concrete slab, in which pipes, ducts or 
heating cables are placed. Half of an electrical floor heater 
is presented in Fig. 1. Basic thermal insulation is located 
under the concrete slab. Concrete base is the lowest layer. 
Floor covering or dry-set-mortar with flooring is placed on 
the upper surface of the heater. Additional side thermal 
insulation is placed on outer vertical edges of the concrete 
slab. 

A few simplifying assumptions are applied in modelling 
of a floor heater. In most cases, the system is analysed as 
plane-parallel (two-dimensional) [4-9]. It significantly 

reduces the size of a model and, at the same time, shortens 
the numerical computations time. Ideal (adiabatic) side 
insulation is mostly assumed on outer vertical concrete slab 
walls. Thanks to this assumption, the distribution of a 
temperature field in the heater is repeatable and the 
analysis can be limited to an area placed between two heat 
sources [5-7] or to half of this area [4, 8, 9]. In some cases, 
perfect basic thermal insulation (on the bottom surface of a 
floor slab) is also assumed [5, 9]. This assumption reduces 
the number of the layers of heating system. 

Side thermal insulation closer to reality may be also 
analysed at outermost vertical walls of the concrete slab 
(Fig. 1). Therefore, the primary purpose of this paper is the 
examination of the impact of side insulation lossiness on the 
simulated temperature field distribution of the heating 
system. Two-dimensional initial-boundary value problem of 
heat equation was formulated for a model with lossy 
insulation on vertical walls of the concrete slab. This 
problem was discretized with the implicit finite difference 
method. Obtained system of algebraic equations was 
solved on a traditional processor (CPU) and graphics 
processing unit (GPU). Simultaneous (parallel) work of 
these processors enables a significant reduction of the time 
of computations (what should be considered as the second 
purpose of this paper). In the analysis Biconjugate Gradient 
Stabilized method (BiCGStab) [10-12] with Jacobi 
preconditioner [11, 12] was used. Results of computations 
in the form of profiles and distributions of temperature field 
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Fig.1. Half of the cross-section of electrically heated floor: 1 - concrete base, 2 - basic thermal insulation, 3 - concrete slab, 4 - outer wall,  
5 - side thermal insulation, 6 - heating cables 
were compared with solutions of a model with perfect 
(adiabatic) insulation of vertical walls of the concrete slab. 
 
Mathematical model of a floor heater 

In the system with i d e a l  side thermal insulation, 
analysis of the thermal field distribution in a cross-section of 
a heater may be limited to hatched area shown in Fig. 1. 
Appropriate initial-boundary value problem describing this 
case and its solution are presented in paper [13]. 

In case of l o s s y  side thermal insulation model, 
external wall (area number 4 in Fig. 1) has to be taken into 
consideration because it has an influence on the 
temperature field distribution in the section of a heater. 

In defined model it was assumed that the length of the 
system is much greater than its cross-sectional dimensions 
(like for example in long corridors, garden tunnels, 
circulation areas, etc). In this case the thermal field 
distribution can be discussed as a plain-parallel and it can 
be described by the two-dimensional heat equation [14]: 
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In equation mentioned above Ti(x,y,t) describes temperature 
field of point at coordinates (x,y) in t time. Subscript i 
(i = 1,2,…,5) defines the material corresponding to a given 
point (Fig. 1). Next, gi(x,y,t) is the volumetric efficiency of 
heat sources (W/m3). Thermal diffusivity of the ith material is 
defined by the following relationship: 

(2) ,
c ii

i
i 

   

where: i - thermal conductivity, ci - specific heat, i - mass 
density. These values are not dependent on the 
temperature. Such an assumption is valid because of the 
small range of temperature variations of the system. 
Parameters of the materials of zones (1 and 3) as well as (2 
and 5) are equal in pairs. 

In the analysed model it is assumed that identical outer 
walls are placed on the left and on the right side of the floor. 
What is more, it is assumed that the heating cable is 
arranged symmetrically with respect to a vertical line 
passing through the centre of the system (x = w1). In order 
to ensure conditions appropriate for comparison of analysed 
systems, the first section of the cable was placed at a 
distance equal to half of the distance between heat sources 
(measuring from insulation). 

The above discussion leads to the following condition: 
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Temperature distribution is therefore symmetrical with 
respect to the centre of the floor and analysis can be limited 
to only half of the cross-section of the floor shown in Fig. 1. 

The upper surface of the floor emits heat into the room 
by means of radiation and natural convection. This 
phenomenon is described by the III-rd kind boundary 
condition with the total heat transfer coefficient 1: 
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 Tamb1 - an ambient room temperature. 

Hankel's boundary condition was also put for an outer 
wall of a building (contour 3) and for a concrete base 
(contour 2): 
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 2 - a total heat transfer coefficient, 

 Tamb2 - a temperature outside of the building. 

Horizontal cross-section of the outer wall on the level of 
the floor (4) is only 6.02% of the total perimeter of the 
system (Fig. 1). Furthermore, 4 is located behind the 
thermal insulation 5. Therefore, heat transfer on 4 is small 
and can be ignored: 
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On the lower surface of the concrete base (contour 1) a 
constant ground temperature (Tg) is assumed: 

(7)   .t,xforTt,y,xT g 00 11    

On the boundary contours qr (between qth and rth 
material zone) the conditions of the continuity of 
temperature and heat flux are met: 
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where pairs of indexes have the following values: (q=1, 
r=2), (q=1, r=4), (q=1, r=5), (q=2, r=3), (q=2, r=5), (q=3, 
r=5) and (q=4, r=5). (…)/qr defines derivatives normal to 
qr contour in points (x,y) qr. 

Due to low cable mass (in comparison with the mass of 
the concrete) and small cable diameter (compared to the 
size of the intersection of the heater) the structure of a 
cable and temperature field of its intersection is not taken 
into consideration during the analysis. The heating cable is 
modelled with control surface Scab which is a small 
surroundings of the cable axis. Volumetric efficiency of heat 
sources in points of a model that do not belong to control 
surface is zero. Heater is regulated by an on/off controller 
working with a temperature sensor. The sensor is located 
on the floor surface between two sections of a heating cable 
(point C in Fig. 1). When the temperature of the sensor 
point reaches TOFF value, power supply of a heating cable is 
switched off and volumetric heat efficiency of surface 
control points of the cable is zero. On the other hand, when 
the temperature detected by the sensor is lower than TON, 
the power supply of a heating cable is switched on again 
and volumetric heat efficiency of the heat source is gcab. The 
following relationships can be derived from these 
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assumptions: 
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Signs of derivatives found in (10b) clearly define moments 
of switching power supply of a heating cable off and on 
(accordingly, when sensor temperature is increasing and 
decreasing). The need for uniformization results from 
bilateral overshot beyond the range TON, TOFF caused by 
thermal inertia of the system. 

Initially (t = 0) the system is in a steady state. Two-
dimensional stationary heat equation has to be solved in 
order to determine temperatures in all points of the model in 
this state [14]: 

(11) 
   

,
y

y,xT

x

y,xT iuiu 0
2

2

2

2










 

with similar boundary conditions (3)-(9) as in the case of 
equation (1). In above-mentioned conditions, temperature 
Ti(x,y,t) should be replaced by temperature Tui(x,y). 
Furthermore, because of the opposite sense of the heat 
flow, left sides of equations (4) and (5) will change their 
signs. Solution of equation (11) uniformized this way is an 
initial condition for equation (1): 

(12)    .y,xTt,y,xT iui  0  

Equations (1)-(10) and (12) define initial-boundary value 
problem. Solution of this problem models functioning of a 
floor heater with lossy thermal insulation and an on/off 
switch. 
 
Numerical model of an initial-boundary value problem 
for the system with lossy side thermal insulation 

In order to obtain the numerical model of initial-boundary 
value problem the implicit finite difference method was 
applied [14]. Model of electrical floor heater presented in 
Fig. 1 was covered with rectangular mesh nodes of finite 
difference method. Fragment of this mesh is shown in Fig. 
2. 
 

 
 

Fig.2. Fragment of mesh nodes of finite difference method with 
marked control surface 
 

Equation (1) was discretized in time and space. Spatial 
derivatives of the second-order were approximated with 
central difference quotients, while the first-order time 
derivative was replaced with a forward difference quotient. 
After assuming equal mesh size (x = y) and making 
necessary transformations, differential form of the transient 
heat equation was obtained: 
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In the above equation, subscripts (k,l) denote the location of 
a node in the finite difference mesh, n is a consecutive time 
moment and Foi denotes Fourier’s number corresponding to 
the ith material: 

(14) ,
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where t is a time step. 
Dimensions of control surface in numerical modelling of 

the heating cable result from the finite difference mesh size 
(Fig. 2). This surface area is a square characterized by x 
side (because x = y). The axis of the cable is in the 
centre of the square. Volumetric efficiency of the heat 
source corresponding to the control surface equals: 

(15) ,
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where Qcab is a linear density of emitted power (W/m). 
The heat sources are controlled by a regulator in a 

manner described in a previous section. Equations (10) 
take the following form: 
(16)
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where nTC  is a temperature determined for the nth time step 

in point C (Fig. 1), in which temperature sensor is located. 
Equation (13) may be applied for nodes located inside 

the analysed model, which are surrounded by four 
neighbouring nodes. For nodes located on boundaries of 
the analysed model or on the boundaries of the materials 
other equations should be introduced. These equations 
should take boundaries conditions into consideration. For 
the case of: 
- surfaces exchanging heat with environment (2, 3, 5, 

6), 
- adiabatic contours (4, 7, 8, 9), 
- boundaries of materials (12, 14, 15, 23, 25, 35, 45), 
- corner nodes joining adiabatic contour with a contour of 

heat transfer (3  4, 6  7), 
- corner nodes joining boundary of materials with 

adiabatic surface (7  8  23, 8  9  12) 
appropriate relations have been derived and presented in 
[13]. For this purpose, in that paper, the elimination of non-
existing nodes [9] or energy balance method was applied 
[14]. Herein energy balance method was also applied in 
order to determine equations for the rest of corner nodes. In 
case of nodes joining boundary of materials with surface of 
heat transfer, the following equations were obtained: 



274                                                                             PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 92 NR 12/2016 

(17a)  

,forxT

T
FoFo

TT

TT
FoFo

x

amb

n
l,k

n
l,k

n
l,k

n
l,k

n
l,k

143222

4

4

1

11
141

1
14

1
11

1

4

4

1

1
241

4

22

2444







































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In contrast, the equation appropriate for the node located on 
the boundary of materials, which also joins adiabatic 
contour with contour that gives up the heat to the room, 
take the following form: 
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Equations appropriate for nodes forming the boundary 
between three materials take other form: 
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On the bottom surface of concrete base (1) nodes have 
a constant temperature Tg. 

Differential equations written for all nodes of finite 
difference mesh form a system of linear algebraic 
equations. The number of unknowns present in this system 
(i.e. temperature values in nodes of the mesh) is K·(L-1), 
where K is the number of the nodes in direction of the x 
axis, and L is the number of nodes in direction of y axis. 

The temperature of all nodes of the model at the initial 
moment of time n = 0 (i.e. in steady state before turning on 
the power) has to be determined in order to begin numerical 

calculations of transient state of the working floor heating 
system. To determine these values, new differential 
equations for the model with switching off the heating cable 
should be obtained. Changes result from fundamental 
differences between parabolic (1) and elliptic (11) 
equations. 

During the discretization of equation (11) second-order 
derivatives were replaced with the central difference 
quotients. This resulted in the following equation applicable 
for nodes located inside the model: 

(20) .TTTTT l,kl,kl,kl,kl,k 041111    

In contrast nodes located on outer boundaries of the model 
or on boundaries of materials require derivation of new 
equations concerning boundary conditions. As in the case 
of transient state, most of the dependences were presented 
in [13]. Energy balance method was applied to obtain the 
rest of the equations. In case of nodes joining boundary of 
materials with surface of heat transfer the following 
equations were obtained: 
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while in the case of the node located on the boundary of 
materials and joining adiabatic edge with a contour of heat 
transfer, the following equation was derived: 

(22) 
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Next equations apply to nodes located on boundaries of 
three materials: 

(23a)
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(23b)
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(23c)
     

  .forTT

TTT

l,kl,k

l,kl,kl,k

35252315152

132153532

02

22











 

Writing differential equations of steady state for 
subsequent nodes, the system of linear algebraic equations 
is obtained. The solution of this system of equations is the 
initial condition for the system of equations corresponding to 
transient state of the heater. 
 
Software and parameters of the model of a heater 

In case of analysed electrical floor heater with lossy side 
thermal insulations (Fig. 1), following dimensions of the 
model were taken into consideration: 

(24) 
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In case of the system with ideal side thermal insulation, the 
same dimensions of the model were taken into 
consideration, but the analysis was limited to hatched area 
shown in Fig. 1. 
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It is assumed that the slab and the base are made of 
concrete characterised by the same parameters. What is 
more, it is assumed that basic and side thermal insulations 
are made of the same foamed polystyrene. Parameters of 
the materials, from which parts of the heater are made of, 
are presented in Table 1. 
 
Table 1. Material parameters of the floor heater model 

Parameter 
Symbol 

[unit] 
Material i 

1 and 3 2 and 5 4 

Thermal conductivity i [W/(m·K)] 1.0 0.04 0.77 

Specific heat ci [J/(kg·K)] 840 1460 880 

Mass density i [kg/m3] 2000 20 1800 

 
The following additional parameters were used during the 
simulation of the floor heater: 

(25) 
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The analysed model of the heater was covered with a finite 
difference mesh of the size x = y = 0.0025 m. The mesh 
consisted of K = 733 nodes in the direction of x axis and 
L = 133 nodes in the direction of y axis. Because of known 
temperature values of nodes located at contour 1, the total 
number of unknowns (in each system of linear algebraic 
equations) was 96 756. In order to determine the initial 
temperature field distribution, the system of equations 
resulting from the differential form (11) and appropriate 
boundary conditions, had to be solved one time. However 
the analysis of the transient state consists of solving 
(multiple times, for consecutive time moments n = 1, 2, …) 
system of equations resulting from a differential form of the 
problem (1)-(10), (12). The operation of a floor heater 
during 24 h from the system start up was analysed. 
Application of time step t = 2 s required the execution of 
43 200 steps of the calculation method. 

In order to solve systems of equations and determine 
the transient state temperature field distribution author’s 
computer program was developed in C++ language. 
Because the coefficients matrices of obtained systems of 
equations contained a very small number of non-zero 
elements, they were stored in a computer memory with the 
use of CSR (Compressed Sparse Row) method [11, 12]. 
Systems of equations were solved with the use of 
Biconjugate Gradient Stabilized method (BiCGStab) with 
Jacobi preconditioner. In order to shorten the computation 
time, the algorithm of this method was implemented on a 
GPU, which assists traditional processor (CPU). For that 
reason Nvidia's CUDA parallel computing platform [15, 16] 
and two bundled linear algebra libraries - CUBLAS [17] and 
CUSPARSE [18] - were applied. The computations were 
carried out with the use of a personal computer equipped 
with the Intel Core 2 Quad CPU Q9650 3.00 GHz 
processor, 4 GB RAM memory and Gigabyte Nvidia 
GeForce GTX480 graphic card (480 CUDA cores, 1536 MB 
of GDDR5 memory). The program was executed under 
Microsoft Windows 7 Professional operating system. 
 
Influence of lossiness of side insulation on thermal 
field distribution of the heater 

As a result of numerical computations, transient 
temperature field distributions of two analysed models (with 
ideal and lossy side thermal insulation) were obtained. 
Comparison of temperature distributions on the surface of 
the floor after a specified period of time from supplying 

power to heating cable (contour 6, Fig. 1) is presented in 
Fig. 3. In case of the system with lossy side thermal 
insulation temperature values in all nodes of the model 
directly result from calculations. However, in case of a 
system with ideal side thermal insulation, the calculations 
were only carried out for the area of the floor hatched in Fig. 
1 (distance from 0.29 m to 0.36 m in Fig. 3). In more distant 
parts of the section of the floor (distance from 0.36 m up to 
0.43 m) the temperature field distribution is a mirror image 
of distribution described earlier. In subsequent segments it 
is repeated every 0.14 m. Such field distribution is forced by 
adiabatic planes occurring in the model with ideal side 
thermal insulation. 
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Fig.3. Temperature distribution on the surface of the floor in 
selected time steps 
 

Analysing Fig. 3 it can be seen that the temperature of 
points located near the left edge of the floor (x = 0.29 m) is 
lower in the model with a lossy side thermal insulation than 
in the model with perfect side insulation. This is caused by a 
part of the heat flux passing through a lossy side insulation 
towards the outer wall, causing a decrees of the 
temperature of this part of the floor. Towards the centre of 
the floor, the differences between the temperatures in two 
models decrease, and from about 0.59-0.69 m 
temperatures are equal. Loss of heat through sides of 
heater also causes displacement of extreme temperature 
points. In the model with ideal side insulation points of the 
highest temperature on the surface of the floor were located 
directly above sections of the heating cable. Points of the 
lowest temperature on the surface of the floor were located 
in the middle of the distance between them. In the model 
with lossy side insulation points of maximum temperature 
are shifted to the right (first maximum is shifted by 0.015 m 
and second is shifted by 0.005 m). In contrast, points of 
minimal temperature are shifted to the left (first minimum is 
shifted by 0.01 m and second is shifted by 0.0025 m). With 
the passing of time, the temperature difference between 
adiabatic case and real case increases (Fig. 3, for 
0.29  x < 0.59 m). This phenomenon is caused by the 
increase of concrete slab temperature. Increase of this 
temperature forces greater heat loss to the environment. 

Temperature profile (relationship between time and 
temperature) of two selected points located on the surface 
of the floor - A and B (Fig. 1) - is presented in Fig. 4. Two 
specific periods are distinguished in the operation of the 
floor heater. During the first period, the transient state 
occurs. In this state the profile is aperiodic (i.e. there is no 
oscillation). In both models, transient states last for 
approximately 10.6 hours. In the second period system 
works with an on/off controller operating with a sensor, 
which abscissa is xc = w4 + w5 + wc = 0.85 m > 0.69 m. At 
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this point, the temperature profiles are almost the same in 
both adiabatic and real cases (Fig. 3). Therefore, the 
operation of turning on the power of the heating cable and 
the operation of turning it off are conducted at a similar time 
(time difference does not exceed 1 minute). In the case of 
model with ideal thermal side insulation the temperatures of 
points A and B are higher than in the case of lossy model. 
In both models the temperature of point B (located above 
the cable) is higher than the temperature of point A. System 
with adiabatic side insulation warms up faster (e.g. point B 
reaches 26 ºC 1.7 h earlier). 
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Fig.4. Temperature profile of selected heater points (A and B) 
 

Fig. 5 shows the temperature distribution over the half of 
the surface of the floor at the moment of the first turning off 
the power of the heating cable (OFF) and at the moment of 
turning it on again (ON). Drop of temperature at the left 
edge of the floor is clearly noticeable in case of the model 
with lossy side thermal insulation. In the outermost left point 
differences between models reach up to 2.5 °C. 
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Fig.5. Temperature distribution on the surface of the floor at the 
moment of the first turning off the power of the heating cable (OFF) 
and at the moment of turning it on again (ON) 
 
Influence of modelling lossiness of side insulation on 
the numerical computations 

Method of modelling side thermal insulation significantly 
affects the size of analysed model of an electrical floor 
heating system. In case of a system with perfect side 
insulation, computations are carried out only for half of 
repeatable floor segment (hatched area in Fig. 1). Whereas, 
in case of the system with lossy side insulation, the 
temperature distribution is computed for the whole model 
presented in Fig. 1. This increases 26 times the number of 
unknowns and the number of non-zero elements of the 

coefficient matrix (in comparison with model with adiabatic 
side insulation). Discussed parameters of the model with 
lossy side insulation are collected in Table 2 (for 4 sizes of 
the finite difference mesh). 
 
 

Table 2. Division of floor heater model and parameters of the 
system of equations (lossy side thermal insulation) 

Mesh size
x [m] 

Mesh 
Number of 
unknowns 

Number of non-zero 
elements of the 

coefficient matrix 

0.0025 733 × 133 96 756 482 050 

0.00125 1465 × 265 386 760 1 930 342 

0.000625 2929 × 529 1 546 512 7 725 646 

0.0003125 5857 × 1057 6 184 992 30 911 134 

 
Increased size of solved systems of equations 

significantly increases execution time of the program 
modelling lossy side insulation: the program is executed at 
least 2 times longer (for step size x = 0.0025 m) and up to 
about 16 times longer (for step size x = 0.0003125 m) in 
comparison with program modelling ideal side insulation. 
Detailed summary is presented in Table 3. 
 
Table 3. Ratio of execution time of models with lossy and with 
adiabatic insulation 

Mesh size
x [m] 

Execution time of  
a model with lossy 

side insulation  
[s] 

Ratio of execution 
time of models with 
lossy and adiabatic 

side insulation 

0.0025 176.42 2.22 

0.00125 777.31 4.68 

0.000625 3 838.01 9.39 

0.0003125 24 551.20 16.47 

 
Times presented in Table 3 were obtained by 

conducting simultaneous calculations on CPU and GPU. 
Comparison of these times with times of programs executed 
only on traditional CPU is interesting. Because of that, 
sequential versions of programs for models with ideal and 
lossy side insulation were created. In these programs, 
algorithm of BiCGStab method was implemented with the 
use of Intel Math Kernel Library (MKL) [19] - a library 
containing a set of procedures for numerical linear algebra. 
Speed-ups were calculated on the basis of obtained 
execution times. Speed-up was defined as the ratio of time 
of execution of the program only on traditional processor 
(tCPU) and time of execution of the program on traditional 
processor and graphics processor unit (tCPU+GPU) [20]: 

(26) 
GPUCPU

CPU

t

t
S


 . 

Obtained times and speed-up values are presented in Table 
4. 
 
Table 4. Speed-up in the model with lossy and ideal side thermal 
insulation 

Mesh size 
x [m] 

Execution time of  
a model with lossy  

side insulation 

Speed-up  
in a model  
with lossy  

side insulation 

Speed-up 
in a model 
with ideal  

side insulationCPU 
[s] 

CPU+GPU 
[s] 

0.0025 590.34 176.42 3.35 0.33 

0.00125 5 632.73 777.31 7.25 0.68 

0.000625 45 200.73 3 838.01 11.78 1.86 

0.0003125 366 145.37 24 551.2 14.91 7.54 
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In the system with ideal side insulation additional 
application of the GPU reduced the computation time only 
in cases of two the most dense meshes. Whereas, in the 
system with lossy side insulation the speed-up was 
obtained in all cases. The speed-up ranged from 3.35 to 
14.91. Larger speed-ups obtained in cases of models with 
lossy side insulation are caused by larger systems of linear 
algebraic equations. Such systems of equations allow a 
better utilization of the GPU computing power. 
 
Final remarks 

Comparison of two models of electrical floor heating 
systems (system with ideal side thermal insulation and 
system with lossy side thermal insulation) were presented in 
this paper. Author's software was developed. This software 
enabled determining the distribution of transient 
temperature field in the cross-section of a heater. Programs 
used parallel computations performed simultaneously on a 
CPU and a GPU. It has been found that taking lossy side 
thermal insulation into consideration has the greatest 
influence on temperature field distribution in the edge layer. 
The deformation of the temperature field distribution 
appearing in this area reaches its maximum at the left edge 
of the floor and decays after the distance of approximately 
0.3-0.4 m towards the centre of the floor (Fig. 3). In 
addition, temperature extremes change their locations. In 
comparison with a model with ideal side thermal insulation, 
maxima are shifted to the right and the minima are shifted 
to the left. Model of side thermal insulation has no impact 
on work cycles of on/off controller. This is caused by the 
position of temperature sensor (it is located outside of the 
area in which the temperature decrease appears in case of 
model with lossy side insulation). 

Taking lossy side thermal insulation into account causes 
a significant increase of the size of analysed model of a 
floor heater, thus there is a grow of number of nodes of 
finite difference mesh and the number of unknowns in 
solved systems of equations. This significantly extends the 
time of the analysis. The paper shows that the application of 
GPU shortens the time of computations. 
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