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Streszczenie. Zaprezentowano metodę pomiaru odpowiedzi impulsowej układu liniowego wykorzystującą podpróbkowanie Σ∆ jego sygnału 
wyjściowego przy prostokątnym sygnale wejściowym. Przedstawiono algorytm przetwarzania sygnałów, umożliwiający redukcję błędów 
pomiarowych. Przeanalizowano zależność błędów od krotności podpróbkowania, liczby próbek oraz błędów częstotliwości na przykładzie 2 
typowych układów liniowych. Metoda pomiaru odpowiedzi impulsowej układu liniowego wykorzystującą podpróbkowanie Σ∆ 
 
Abstract. A method of a measurement of a linear system’s impulse response is presented. For a rectangular input signal Σ∆ undersampling of the 
system's output signal enables calculations of its impulse response. An algorithm of output signal's digital processing enabling a reduction of errors 
is described. A dependence of measurement's errors on the number of samples per period and relation between sampling and signal's frequencies 
was analyzed. Exemplary calculations were performed for two typical linear systems. 
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An introduction 

An impulse response is the basic characteristics of 
every linear system. Its direct measurement is possible only 
in an approximative way, because generation of Dirac's 
impulse is impossible. It might be achieved as a derivative 
of system's step response, however a construction of an 
ideal differentiating circuit is impossible too. Therefore a 
method, applying Σ∆ undersampling [4-6] is proposed. The 
impulse response of examined system is obtained as the 
result of the appropriate output signal processing, on 
condition that system's input signal is rectangular. 
 
An idea of the method 
  When a rectangular wave of a frequency f0 is applied as 
the input signal of the linear system, its output signal x0(t) is 
periodic and equal to the step response, on condition, that f0 
is low enough. Therefore it can be expressed in a form of 
Fourier’s series 
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A0 denotes the mean value of the signal, Am and φm - the 
amplitude and the phase of the mth harmonic component, 
respectively. 

To obtain the impulse response h0(t) of the linear 
system, x0(t) should be differentiate. 
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To apply the digital signal processing the output signal 
ought to be sampled. When the number of samples per 
period equals N, the k-th sample (k = 0 ... N-1) of h0(t) can 
be expressed as 
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 Because FFT algorithm is used in further 
considerations, the number of samples must be a power of 
2. To apply the Σ∆ undersampling, the time Td0 of 
integration of the output signal x0(t) must satisfy the 
following condition [1-6] 
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where M is the undersampling factor. 

A difference y0(t) of two successive integrals can be 
expressed as 
(5)       
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Comparing (2) and (5) one can notice, that signals h0(t) 

and y0(t) are similar. Only the amplitudes of particular 
harmonic components of both signals differ one from 
another. Therefore the signal h0(t) can be obtained by 
means of filtering y0(t) by the filter, which transfer function 
H0(f) satisfies following conditions: 
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The filter realizing conditions (6) and (7) can be 

designed as the finite response digital filter, which transfer 
function is given by following formulas: 
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 This filter also works as an anti-aliasing filter, because 
its attenuation at the frequency f0 /2N exceeds 3 dB. 

The method does not generate any errors itself on the 
condition, that frequencies of the signal and the sampling 
generator are exact and the synchronization between both 
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generators is ideal. In an opposite case phases of 
measured signals change, therefore errors appear [6,7]. 
 Relative stabilities of the signal's frequency and the 
sampling period are denoted as δf and δTd respectively, so 
the real frequencies of the signal and the sampling period 
can be expressed as [7]: 

(10)                               fff  10 ,  

(11)                            ddd TTT  10 . 

The real values of samples of measured signal y(k) can 
be written as 
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(13)                dd TfTf   . 

To avoid accidental errors of the measurement the 
following algorithm is applied [7]. Only single period of the 
signal y1(k) is measured and its FFT denoted Y(p,n) is 
calculated. 
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 This measurement is repeated P times. A mean value 

of y(k) is obtained as the geometric mean of all FFTs, 
afterwards IFFT is calculated, according to (15) and (16). 
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In the end, the mean signal is filtered by the filter H(k). 
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To estimate errors of the described method simulations 
repeated P = 100000 times were performed. The 
calculations were made separately for every harmonic 
compound of the signal. An error δ1, defined as 
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was chosen as the criterion of an accuracy of the method. A 
probability density p(f) of frequency errors, given as [7] 

(19)                 













 0

00

11
f

ff
rect

ff
fp


, 

was taken into considerations, because in this case the 
largest values of errors were obtained. It was also 
assumed, that the time of the measurement is short 
enough, so the frequencies of both generators are constant.  
Results of calculations are shown on Figures 1 - 3.  
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Fig. 1. A dependence of the error δ1 on m and N for M=50, δf 

=δTd=10-6 
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Fig. 2. A dependence of the error.δ1 on N and M for m=5, δf 

=δTd=10-6 
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Fig. 3. The error δ1 as the function of δf and δTd (m=5, M=50, 
N=256) 

The results of the calculations prove, that the accuracy 
of the method is getting worse for greater values of N, M 
and the errors of both frequencies. The main reason of this 
effect is a summation of phase errors, when the time of the 
measurement gets longer. One should also notice, that 
relative errors are greater for higher harmonic components 
of measured signal. Nevertheless their influence on the total 
error is limited, because amplitudes of higher harmonics 
decrease significantly. 

 
Result of simulations for exemplary linear systems 

The method of the measurement described above was 
also tested in the case of two typical linear systems, which 
transfer functions were given by following formulas: 
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Their impulse responses are presented on Fig. 4. 
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Fig. 4. Impulse responses of considered linear systems 
 

In these cases errors of simulations δ2 are defined as 
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where h0max is the maximum value of the impulse response. 
Results of the calculations, performed for identical 
conditions, as in the previous section, are presented on 
Figs. 5 – 8.  
 

128
256

512
1 024

0

100

200

300
0

0.02

0.04

0.06

NM

d
e

lta
 2

 

Fig. 5. A dependence of δ2 on N and M for H1(s), δf =δTd=10-6 
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Fig. 6. A dependence of δ2 on δf  and δTd for H1(s), M=30 N=256 
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Fig. 7. A dependence of δ2 on N and M for H2(s), δf =δTd=10-6 
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Fig. 8. A dependence of δ2 on δf  and δTd for H2(s), M=50 N=256 
 
Conclusions 
 Presented results of calculations prove, that Σ∆ 
undersampling is the effective method of the measurement 
of the linear system's impulse response. The whole process 
is realized by means of the set of analogue integrators and 
simple digital filters. The method can be especially suitable 
in the cases, when parameters of the system require high 
sampling frequency, too high to apply sampling of the signal 
according to Shannon's theorem. The acceptable accuracy 
of the measurement is possible to achieve for fluctuations of 
sampling and signal's frequencies in a range of 10-6. In this 
case the measurement can be performed with the error less 
than 1 % for M in the range of 100 and N = 256 or even 
512. 
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