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Abstract. This paper deals with the mathematics models and properties of three types the scattering matrices for arbitrary multiport devices normal-
ized to separate resistive loads, separate complex loads and complex n-port load. The introduced scattering matrices describe a matching problem 
in different multiport structures, for example a connection of given antenna array with multiport beamformer. These mathematics models may be 
used for analysis of signal distribution and their disturbances in different multiport structures and for the design of any optimum multiport devices. 
 
Streszczenie. Artykuł przedstawia modele matematyczne i właściwości trzech typów macierzy rozproszenia dla dowolnych układów wielowrotniko-
wych normalizowanych do osobnych rezystywnych i zespolonych obciążeń oraz do obciążenia wielowrotnikowego. Wprowadzone macierze opisują 
problem dopasowania różnorodnych wielowrotnikowych struktur (Macierze rozproszenia wielowrotnikowych układów radiowych). 
 
Keywords: scattering matrices, multiport devices, new scattering matrix. 
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Introduction 

One of the classic problems in antenna theory is a de-
sign of an optimum equalizer to match an arbitrary multiport 
load (antenna array) to generators [3,5]. The solution of this 
problem may be carried out by use of different scattering 
matrices normalized to diagonal or multiport networks [1-9]. 

The paper presents mathematical models and proper-
ties of three type the scattering matrices for given multiport 
devices (Fig.1): normalized to separate resistive loads [1], 
separate complex loads [2,3] and complex n-port load. The 
basis of the scattering matrix normalized to n-port complex 
load network is described in [4]. Using of this matrix for 
multiport broadband matching problem for the arbitrary 
antenna array is presented in [7-9]. These scattering pa-
rameters are based on eigenvalues and eigenvectors of the 
multiport matrices  

As shown there is infinite number of the scattering ma-
trices for given n-port complex load (or value of coupled 
generators) and all of these describe the same power distri-
bution in given multiport networks. 
 
The scattering matrix normalized to diagonal  
impedance matrix 

The scattering matrix connects vectors of incident a and 
reflected b waves of multiport network at all: b = S a. There 
are different determinations of the incident and reflected 
waves and forms of the scattering matrix normalization 
according to types of loads of the multiport network (Fig.1): 
- normalization to resistive loads (Fig.1,a) [1,3]: 
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then scattering matrix S connected to impedance matrix Z: 

(2)   5.015.0 )()( RRZRZRS   , 

where R = {R i } - diagonal matrix of generator resisters; 
- normalization to complex loads (Fig.1,b) [2,3,5]: 
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where ri = Re z i - real parts of complex impedance’s z i; then 
scattering matrix S connected to impedance matrix Z: 

(4)   5.01*5.0 )()( gggg RZZZZRS   , 

where Rg = Re Zg = Re{z i } – real diagonal matrix. 
In the both cases a total average power absorbed by 

network N for arbitrary incident vector a of separate genera-
tors (Fig.1,a,b) is [3]: 

(5)   aSS1aIU )()(Re  NP ; 

superscript (+) denotes the complex conjugate transpose 
(also called the hermit conjugate) matrix [5]. 

 
A new scattering matrix normalized to n-port complex 
impedance matrix 

A solution of the broadband multiport antenna matching 
problem for given antenna pattern may be carried out with 
base of design algorithm with use of ordinary scattering 
matrix (Fig.1,c). [1-3,5,6]: 
1. Determination of amplitude-phase antenna distribution for 
given antenna pattern. Synthesis of the corresponding 
broad band divider. 
2. Analysis of partial impedance’s for obtained distribution. 
3. Synthesis of optimal matching networks for determined 
partial impedance’s. 
4. Then it is changed: 

a) partial impedance’s, 
b) amplitude-phase antenna distribution, 
c) antenna pattern (main lobe and side lobe). 

5. Optimization of the broadband divider.  

This is iteration process and solution of “matching-
pattern” problem may be very difficulty. 
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Fig.1. Structures of the multiport networks 
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Effective solution of this problem may be carried out by 
use of new multiport scattering matrices normalized to n-
port network [4,7-9]. 

A new scattering matrix is constructed for given load im-
pedance matrix Z L and non-diagonal output impedance 
matrix Z o of the antenna-feeding network N o (beamformer) 
and corresponding equivalent structure (Fig.1,c,d). 

With use equations E = U + Z o I and U = Z L I, where 
E, U, I – corresponding vectors we have for total average 
power P absorbed by two-port N (Fig.1,d): 

(6)    IRIIU LNP   )Re( ,  

where: RL = 0.5(Z L + Z L
+) - real part of load impedance 

matrix Z L , I = (Z o + Z L)-1E - current vector. 
For ideal matching case we have condition Z+

o = Z L, 
then incident current is Iin = Ro

-1E, where Ro= 0.5(Zo+Zo
+) - 

real part of generator impedance matrix Z o (Fig.1,d); then 
maximal average power Pmax absorbed by two-port N is  

(7)    ERE 1
omax 0.25 P . 

Then for arbitrary load network N (Fig.1,d) reflected av-
erage power Pref  is: 
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After transformation we have: 
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Therefore, total average power absorbed by multiport 
network N is given by: 
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Further, real part of output impedance matrix Z o has 
right- and left-standard factorizations [4,7]: 

(11)  QQHHZZR   )(5.0 ooo , 

where H , Q , H + and Q +- complex factors and hermit con-
jugation of the matrices accordingly, as in (5) superscript (+) 
denotes hermit conjugate matrix. For the reciprocal network 
R o = R o t , therefore H = Q t , and further only right -standard 
factorization will be used. The real symmetrical positive 
determined matrix R o has an orthogonal expansion [5]: 

(12)      tir VVR oo , 

where V = V* , VV t = 1 - real orthogonal eigenvector matrix 
and ro i > 0 - real eigenvalues of the matrix R o  Then factor 
matrix H has a following expansion with use of complex 
arbitrary unitary matrix W, WW + = 1: 

(13)     WVH iro . 

In this case complex incident a and reflected b waves 
and complex normalized scattering matrix S of the multiport 
network (Fig.1,d) normalized to the impedance matrix Z o of 
n - port complex source network N o are given by: 
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If to insert these formulae for incident a and reflected b 
waves in (10) we have known equation for total average 
power absorbed by multiport network: 

(15)   bbaa   refN PPP max . 

After comparison of equations (10-15) we make an im-
portant conclusion: there are an infinite number of the inci-
dent a and reflected b waves and multiport scattering matri-
ces S for given multiport complex load through the arbitrary 
unitary matrix W. But all of these scattering matrices deter-
mine the same power dissipation in multiport structure 
(Fig.1,d) because a hermitian form is used for power calcu-
lation (10) and, as a result of further transformation of for-
mulas, both matrices W and W+ disappear. 

The scattering matrix S may be expressed by means of 
the impedance matrices: 

(16) HZZZZHS 1
oo

1 )()()(   LL , 

where Z L and Z o - impedance matrix of the multiport load 
N L and source networks N o (Fig.1,d). 

It is possible to express S in terms of Y for the "aug-
mented" n - port: 

(17)  HYHCS  t2 , 

where: WWHHC t 1*)( ,   1CC   

is the complex unitary matrix determined by arbitrary unitary 
matrix W from (13);  

(18)     1
o


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is an admittance matrix of the "augmented" n - port 
(Fig.1,d). 
Thus the complex normalized scattering matrix is  

(19)     WVYV1WS ][ oo2 itit rr  . 

The elements of S are determined by means of: 
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where a i are the elements of incident wave vector: 

(21)   EHa 15.0  . 

The determination of s ij is may be made from the condi-
tion of one nonzero element from vector a and all nonzero 
elements from E: 
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where h i i , h i j are the elements of factor matrix H (13). 
For determined scattering matrix and arbitrary excitation 
vector a voltage and current vectors are: 
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It is may be proven then total average power absorbed by 
whole multiport N L  is given by  

(24)  ,)()Re( aDaaSS1abbaaIU  NP  
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where matrix D = 1 - S + S named by dissipation matrix.  
Then normalized total average power absorbed by net-

work N L (Rayleigh ratio) is limited by the minimum and the 
maximum eigenvalues of the dissipation matrix D: 

(25) 
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and what's more the Rayleigh ratio is arrived eigenvalues 
d min i d max when the incident wave vectors a are parallel to 
the corresponding eigenvectors of the matrix D. In this case 
the optimization and the matching problem of the arbitrary 
multiport network reduce to the maximization of the mini-
mum eigenvalues of the dissipation matrix D at the given 
frequency band. 
 
A new scattering matrix for cascade connection of mul-
tiports 

Consider the cascade connection of multiport networks: 
an excitation of n - port load N   from set of separate gener-
ators by multiport coupling network N (Fig.2) [7,8]. 

Determine the complex incident and reflected waves for 
the scattering matrix S of the multiport coupling network 
normalized to separate complex internal source imped-
ance’s z  i from ports “” and to n - port load network im-
pedance z o from ports ” ”. Then entire normalization im-
pedance matrix corresponding to source network N o 
(Fig.1,d) is  
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for which the first n generators are uncoupled, but the rest 
of these are zero (Fig.2). In this case the network structure 
in Fig.2 may be considered as the particular network of 
Fig.1,d. 

Then for ports ”” the complex normalized incident and 
reflected waves are: 
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where U and I are voltage and current vectors of multiport 
network N for these ports (Fig.2); Ho and H+

o are diagonal 
matrices - factors of the real part of diagonal matrix Ro of 
uncoupled generators: 

(28)   *
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where:    ii rh   *
oo HH . 
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Fig.2. The structure of cascade connection of multiport networks 
 

Consequently incident and reflected waves for these 
ports may be determined by the same as (2) [1,3]: 
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where r i = Re z i. Then incident waves exactly correspond 
to components of the vector E : 

(30)  iii rEa   2/ , ni ...,2,1 . 

For ports ” ” the incident a and reflected b wave vec-
tors of the multiport network N normalized to the total matrix 
z o of n - port complex load network N   are given by gen-
eral relations (9) [4,7-9]:  
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where Ho- complex matrix factor of the right-standard fac-
torizations of real part of z o as (11): 

(32)  



  ooooo 2/)( HHzzR . 

Then every component of incident wave vector a  for 
ports “” is determined by entire vector E  = [En+1, … E2n] t: 

(33)   

 EHa 2/1

o5.0 ; 

then a condition of one nonzero element of a  is all nonzero 
elements from E  in total case: 

(34) 
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where h  ii , h  ji are elements of factor matrix Ho (27). 
It is known that the symmetrical real matrix Ro has an 

orthogonal expansion as in (12) [5]: 

(35)     ti
r VVR o , 

where V = V*, VVt = 1 - real orthogonal eigenvector matrix 
and r i = r*

 i > 0 - real positive eigenvalues of the matrix 
Ro. 
Therefore factor matrix Ho has total following expansion: 

(36)    WVH iro , 

where W - is an arbitrary complex unitary matrix, WW*= 1.  
Consequently there is an infinite number of the matrices 

H o and vectors a  and b  (27), (29) connected to arbitrary 
matrix W for given n-port complex load z o (Fig.2). 

The complex normalized scattering matrix S of the net-
work N (Fig.2) is provided by the block relations: 
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and for reciprocal networks: 

(38)  t  SS , t  SS , t SS . 

It is a matter of direct verification to prove the correlation 
between the block S  of complex normalized scattering 
matrix S and impedance matrices from ports ”” [2,3]: 
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where Z  - impedance matrix of the n - port network consist 
of 2n - port coupling network N and n - port load network N 
(Fig.2); zi - internal source impedance’s. 

The entire scattering matrix S may be expressed by 
means of the admittance matrix [7]: 
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where: Y - admittance matrix of "augmented" 2n - port N: 
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Z, Z, Z, Z - blocks of impedance matrix of 2n - port N: 
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Co and Co are all-pass ("phase") matrices determined by 
normalization matrices Ho and Ho: 
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According to (28) phase matrix Co is equal to unit on 
imaginary axis (43); but Co is whole symmetrical unitary 
matrix determined by the complex arbitrary unitary matrix W 
(36), (44). 

Then the blocks of the scattering matrix S may be ex-
pressed by means of blocks (41) of the admittance matrix 
Y of the "augmented" 2n - port (Fig.2): 
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The elements of block S with (39), (44) may be expressed 
by the following parameters: 
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where Z i represent the impedance seen looking into port i 
of side”” under matched terminations by impedance’s z i 
for njiijE j ...,2,1,,,0   and load network z o 

(Fig.2); yii , yji are elements of block Y of the admittance 
matrix Y. For block S  used (36) and (44) we obtain: 

(47)     WVYV1WS itit rr   2 . 

The expressions (41), (42) and (43) are shown that block 
S  unequivocally determined by internal source imped-
ance’s z i; but there is an infinite number of the scattering 
matrix blocks S  , S  and then entire matrix S for given 
n - port complex load through the arbitrary unitary matrix W. 
All of these scattering matrices determine the same power 
dissipation of the network (Fig.2). 

Power parameters of new scattering matrix 
Consider an excitation of the cascade connection of 

n-ports from side ”” only: there are arbitrary vector E and 
E = 0 (Fig.2).In this case voltage and current vectors are: 
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In this case the total average power P absorbed by n -
port load network N and coupling network N for the given 
excitation vector E and E = 0 (Fig.2) is given by  

(49)   













  aDaaSS1abbaaP , 

where: a is determined by E (26); matrix D = 1-S+
 S 

named by dissipation matrix [5,7-9]. It is the hermetian 
matrix D = D

+
 and the unitary similar to the diagonal 

positive real matrix of the eigenvalues di [7,8]: 

(50)    1VVVVD  






 ,, iii ddd , 

where V is the complex unitary matrix (called the modal) of 
the eigenvectors of matrix D.  

For ideal matching a maximum total average power ab-
sorbed by whole network is: 

(51)  0S  , 1D  , 

 aamaxP . 

Then normalized average power absorbed by N and N 
for the arbitrary vector a is the normalized hermetian form 
of dissipation matrix D (Rayleigh ratio) [5,7-9]: 

(52)  
 


















 




aa

aDa

aa

aSS1a

maxP

P
. 

The value of the Rayleigh ratio is a function of the inci-
dent vector a. It is shown, that the Rayleigh ratio has sta-
tionary quantities equal to the eigenvalues of the corre-
sponding hermitian matrix; this means that the normalized 
total average power P /Pmax is limited by the minimum and 
the maximum eigenvalues of the dissipation matrix D: 

(53)  max
max

min 









  d
P

P
d

aa

aDa
 , 

and what's more the Rayleigh ratio is arrived eigenvalues 
d min i d max when the incident wave vectors a are parallel 
to the corresponding eigenvectors V of the matrix D (50). 

As forms (49) - (52), the normalized average power 
P /Pmax absorbed by load network N for the arbitrary vector 
a is the normalized hermetian form of hermitian matrix 
S+

 S (Rayleigh ratio) and limited by the minimum and 
the maximum eigenvalues of this hermitian matrix: 

(54)  max
max

min 












  d
P

P
d

aa

aSSa
. 

Consequently the optimization and the matching prob-
lem of the arbitrary multiport network is reduced to two 
tasks: 
- a maximization of the minimum eigenvalues d min of the 

dissipation matrix D (50) at the given frequency band 
for the optimization of the total average power P ab-
sorbed by n - port load network N and coupling network N 
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for arbitrary excitation vector E (the total average source 
power); 

- a maximization of the minimum eigenvalues d min of the 
hermitian matrix S+

 S at the given frequency band for 
the optimization of the total average power P absorbed 
by load network N only for arbitrary excitation vector E. 

If 2n - port coupling network N (Fig.2) is lossless, the 
values of the power are equal (P = P), the unitary condition 
for scattering matrix S is provided: 

(55)   D = 1 - S+
 S = S+

 S 

and these two tasks are reduced to any one. 
 
Conclusions 

The considered mathematical models and the structures 
of three types the scattering matrices for arbitrary multiport 
devices normalized to separate resistive and complex loads 
and complex n-port load may by use for the evaluation of 
the broadband problems of arbitrary multiport structures. It 
is presented structures and properties of a new scattering 
matrix for general case and for multiport cascade connec-
tion. 

The calculation of the blocks of the new scattering ma-
trices and power parameters based on the eigenvalues and 
eigenvectors of the multiport network matrices may be car-
ried out by use the standard computer packets. As shown 
there is infinite number of these scattering matrices for 
given n-port complex load (or value of coupling generators) 
and all of these describe the same power distribution in 
given multiport networks. 

The introduced scattering matrices describe a matching 
problem in different multiport structures, for example a con-
nection of given antenna array with multiport beamformer. 
These mathematical models and parameters may be used 
for the design of an optimum multiport reactive equalizer to 
match an arbitrary passive multiport load to coupled gen-
erators and the optimization of multiport antenna-matching 
network of the different structures. These mathematics 
models may be used for analysis of signal distribution and 

their disturbances in different multiport structures and for 
the design of any optimum multiport devices. 

Solution of these tasks is very important for EMC and 
EMD analysis of the radio systems with complicate transmit 
and receive parts of whole system. 
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