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Mathematical models of electric arc with variable plasma column 
length used for simulations of processes in gliding arc 

plasmatrons  
 
 

Abstract. Differential arc models with various length of plasma column have been described. They were modified to obtain electrical processes in 
plasmatrons with periodic gliding arc discharge. The models were also transformed into integral forms. Macromodels of arcs have been created and 
simulations of electrical processes in plasmatrons have been carried out. Comparisons of results obtained with experiments known from literature 
have shown usefulness of the developed mathematical models to simulate gliding arc discharges.  
  
Streszczenie. Opisano modele różniczkowe łuku elektrycznego o zmiennej długości kolumny plazmowej. Dokonano ich modyfikacji w celu 
odwzorowania procesów elektrycznych w plazmotronach z wyładowaniem ślizgowym powtarzającym się (gliding arc). Przekształcono te modele do 
postaci całkowej. Utworzono makromodele łuków i wykonano symulacje procesów elektrycznych w plazmotronach. Z porównania uzyskanych 
wyników ze znanymi z literatury przebiegami eksperymentalnymi wynikła przydatność opracowanych modeli matematycznych do symulowania 
wyładowań gliding arc. (Modele matematyczne łuku elektrycznego o zmiennej długości kolumny do symulowania procesów w 
plazmotronach gliding arc).  
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Introduction 

An electric arc in the gliding discharge is a source of 
thermal and non-thermal plasma. Thermal plasma is 
characterised by high current density, thermal power and 
gas temperature. Non-thermal plasma, on the other hand, is 
characterised by low currents and current densities, 
possibly leading to current decay, and low gas temperature. 
The sources of plasma are constructed, powered and 
controlled in such as way that the gliding discharge is 
pulsed, with the cycle lasting from over ten to a few tens 
miliseconds. Gliding typically occurs between two diverging 
electrodes (Fig. 1).  

 

 
Fig. 1. Diagram of a gliding arc reactor (1 – power supply, 2 – gas 
supply, 3 – diverging electrodes, 4 – auxiliary electrode, 5 – 
discharge region, A – thermal equilibrium region, B – thermal non-
equilibrium region) 
 

It can be caused by forced gas flow, natural convection, 
its own or external magnetic field. The arc is struck at the 
shortest gap between the electrodes by an external factor, 
such as a high-voltage pulse, auxiliary pulse plasma 
generator, a mechanical system closing the electrodes for a 
moment, etc. GA plasma generators are supplied from a 
DC or AC sources of various frequencies. DC power supply 
systems are of simple construction and ensure stable 
discharges. AC-powered plasma generators, on the other 
hand, are cheaper to produce and simpler to be supplied 
from the grid. When arc spots are gliding on the electrodes, 
the arc is elongated and the voltage raises until the 
discharge becomes unstable. At the moment when the arc 
is disintegrated and plasma recombinates, the discharge is 
initiated again at the shortest gap between the electrodes. 

The properties of the plasma generated strongly depend on 
the plasma generator input power, which can range from 
about 100 W up to 40 kW [1]. The higher the power, the 
greater electromagnetic interference generated into the grid 
due to shorts, interruptions, transient states, nonlinearity 
and load asymmetry. 

It is difficult to construct simple mathematical models for 
approximating the characteristics of gliding discharges due 
to the cyclic character of the discharge and arc elongation. 
 
Modifications of the differential arc models with a 
variable arc length  

The majority of existing arc models describe physical 
processes in an arc of a constant length. This is sufficient to 
represent the phenomena occurring in typical power 
devices in which the arc length is disturbed yet can be 
considered constant, or varies slowly as compared to the 
frequency of changes in the electromagnetic processes. 
Such models, of which the most popular ones are the Mayr 
and Cassie models, can be applied even for simulating 
processes of fast arc quenching in electrical apparatuses.  

The Mayr model satisfies the energy balance equation 
and is expressed by 
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where: g – arc electrical conductance, i – momentary value 
of the forcing current; M – Mayr model time constant, PM – 
Mayr model constant power. The Cassie model likewise 
satisfies the energy balance equation and can be 
expressed as 
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where: C – Cassie model time constant; UC – Cassie 
model constant voltage.  

There are various methods of modifying the Mayr and 
Cassie models discussed in the literature [2-4]. Such 
modifications aim to allow for the external influences on the 
arc and often require adopting some simplifying 
assumptions. Consequently upon that, in the physical 
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conditions diverging from those originally stipulated there 
may be further discrepancies between the actual processes 
and the predictions of the mathematical model.  

Since the heat dissipation processes are relatively 
insensitive to external disturbance, the loss power can be 
roughly assumed to be determined by the static 
characteristics [3] Pdys(t)  Pstat(i(t)). Modifying the Mayr 
model leads to  
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where: NS – time constant. The function of the loss power 
can be approximated by means of the modified static 
voltage-current characteristics Ustat(I), and then (4), where 
Gstat (I) = I/Ustat(I) – value of static conductance. With 
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substituted into (3) and Pdys  Pstat, the modified Novikov-
Shellhase equation can be obtained 
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Owing to the simplifying assumptions adopted in the model, 
it does not strictly satisfy the power balance equation, which 
can allow for arc length variation  
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where: Estat(I) = Ustat (I)/l – static characteristics of the 
electric field intensity in the arc; l – arc length. The static 
voltage-current characteristics of the arc can be 
approximated by the Ayrton equation 
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Adopting the Novikov-Shellhase assumption  
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where: A, B, C, D – constant approximation factors. Hence 
the electric field intensity is defined by  
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The Berger-modified arc equation with the Cassie variable 
voltage     tlUlU CC   leads to the conductance form  
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where: CB – time constant. Since the arc voltage increases 
with the increase in arc length, in [5] a method of 
determining the component of the voltage square in the 
Cassie-Berger model was offered  

(11)    alluC 2
  

with the parameter a [V2/m] being almost constant in the 

wide interval of current i variation. 
As indicated by experimental results [6, 7], the damping 

factor function is strongly nonlinear and depends on a 
number of parameters. For instance, it falls with an increase 

in current or in gas flow. Theoretical analyses of some 
models [8] in turn demonstrate that increase in current 
causes increase in the arc cross-section and because of 
that the function should rise too. The real shape of the 
damping function is in fact affected by phenomena 
associated with nonlinear gas characteristics, such as 
viscosity and heat transfer coefficient [9].  

When the arc is supplied from a nearly ideal current 
source, the arc cross-section does not depend on its length. 
The Cassie model time constant (i, l) = (i) should not 
depend on it, either. If, on the other hand, the arc is 
supplied from a real current source (close to a real voltage 
source), variation in arc length is accompanied by variation 
in current and arc diameter. Because of this, the 
dependence (d(i(l)))) = (l) holds and the quantity  
referred to as the time constant is often assumed to be 
dependent on the arc length [2] 
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where:  - constant coefficient (in short circuit arcs  = 0.4); 
0 – initial value of the time constant corresponding to l0; l0 – 
initial arc length. In the Schwarz-Avdonin models [10], the 
values of the parameters are assumed to be dependent on 
the arc conductance (PM(g) and M(g) or UC(g) and C(g)), 
which in turn can be a function of arc length.  

In publications [1, 11-13] a modification of the Mayr and 
Cassie models was put forward, consisting in adding a 
discharge ignition function. An analogous effect can be 
obtained by including an additional term including voltage 
forcing in the input equations (6) and (10) to decrease 
conductance. In the Novikov-Shellhase model, this will be  
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where  
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where: tl – local time of a single discharge cycle; tz – 
moment of ignition, tz=0s; t1 – duration of an ignition pulse; t2 
– duration of a cycle defined by the condition 

( min2 )( gtgtt ll  ); gmin – minimal prescribed value of 

conductance just before the arc quenching; uz – voltage of 
the auxiliary ignition source. 
The modified Cassie-Berger model is as follows  
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In periodic gliding discharges a small value of g can signal a 
step change in the arc length and initiation of a new 
discharge.  

Directly after each initiation, the arc is the shortest, the 
voltage the lowest and the current the highest. If the mass 
of the gas flux is relatively low, the environment 
temperature is high, time constant also high and the static 
characteristic correspond to Cassie arc model, due to 
reduction of the breakdown voltage of the gas. When the 
arc is the longest, the voltage the highest and the current 
the lowest, the arc properties can be adequately 
represented by the Mayr model. The arc is typically cooled 
most intensively in the initial section of the discharge 
channel where it is narrowed. The metal electrodes are also 
cooled intensively and prone to ionisation metal vapours are 
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constantly removed from the plasma generator chamber. 
Because of that, the voltage-current characteristics tend to 
fall steeply and the Mayr model is preferred as an account 
of the gliding arc discharge.  

The approximations applied to the accounts of the 
physical phenomena occurring in electric arcs can cause 
discrepancies in the assessment of discharge conditions. 
This is especially important in modelling extensively 
elongated arcs. Arc quenching corresponds to the 
conductance approaching zero, which causes a peculiarity 
in numerical solutions, breaks the computations and the 
simulation program.  
 
Modifications of the integral models of the elongated 
arc  

As can be seen on the basis of Eqs (1) and (2), the 
differential Mayr and Cassie equations are linear with 
respect to the variables g and g2. It is difficult to assess the 
stability of solutions of mathematical models of strongly 
nonlinear electric circuits with excitations and arc 
discharges. Besides, in GA devices it is necessary to take 
into account arc quenching and electric disturbances 
applied to induce new ignitions and a step change in the 
discharge location. A method for simplifying the analysis 
and simulation offered in [11-13] involves modifications of 
the analytic solutions of the Schwarz-Avdonin models [10], 
and a subsequent utilisation of macromodels in the form of 
controlled two-clamp elements in the electric circuits.  

The solution to the Mayr equation, expressed as (1), is 
the formula for momentary conductance  
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where g0 – initial value of the conductance. If the same set 
of assumptions is adopted as was for the Novikov-
Shellhase model (6), then will be obtained 
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The solution to the Cassie equation, expressed as (2), is a 
formula for momentary conductance  
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If the same assumptions hold as for the Berger model (10), 
then  
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In publications [1, 11-13] it was suggested that Eqs (16) and 
(18) could be modified by taking into account an additional 
function which represents the discharge ignition. It can also 
be applied as an additional interfering component, 
corresponding to the character of the ignition in solutions 
(17) and (19). The new solutions will be:  
- Novikov-Shellhase model 
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- Cassie-Berger model  
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Changes that the arc length undergoes in time can be 
described by a formula analogous to [13] 

(22)    lgl tvkltl  0    

where: l0 – gap between the electrodes at the location 
where the arc is struck;  - divergence angle between the 
electrodes; vg – velocity of the gas flow forcing the 
discharge motion; k - correction factor. The speed of the arc 
motion can be also changed by applying an external 
magnetic field. In the models (15) and (21), the Cassie 
voltage is given by [10]  

(23)     lgC tvklalu  0
2

  

 
Computer simulations of the electric quantities in 
circuits with various arc models in GA plasma 
generators  

The processes occurring in the GA plasma generator 
were simulated by means of the MATLAB-Simulink 
programme. First, a macromodel was created of a simple 
supply circuit with a real sinusoid voltage source, connected 
in series with a macromodel of a variable-length electric arc. 
As in the majority of other analyses [3, 4], it was assumed 
constant damping factors (time constants). Small and 
constant values of  correspond to very intensive cooling of 
the arc.  

In the first case under scrutiny, a modified differential 
Novikov-Shellhase arc model was considered (13), with the 
following parameters: B = 2 V/m; D = 26 W/m; NS = 0.810-3 
s. From the assumptions concerning the construction and 
operation of the plasma generator it followed that l0 = 3 mm; 
 = 25º; vg = 10 m/s, k = 1, tz = 310-3 s, gmin = 110-4 S. This 
apparatus was supplied from a source of the following 
parameters: Um = 1500 V, Rw = 250 , L = 50mH, f = 50 Hz, 
Uz = 2500 V. The results of the simulation are shown in Fig. 
2. Comparing them to the simulation and experimental data 
discussed in [11-13], we can see that the model offered 
meets the requirements concerning the accuracy of 
approximating the voltage and current waveforms in GA 
plasma generators, especially of low power. 

 
 
Fig. 2. Current and voltage waveforms in a GA plasma generator 
simulated by means of the Novikov-Shellhase model. 

 
In the second case, a modified differential Cassie-

Berger arc model (15) was considered, with the following 
parameters: a = 400 V2/m; CB = 1.110-4 s. The 
assumptions concerning the construction and operation of 
the plasma generator gave rise to the following: l0 = 3 mm; 
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 = 25º; vg = 10 m/s, k = 1, tz = 310-3 s, gmin = 110-3 S. 
The apparatus can be supplied from a source with: Um = 
500 V, Rw = 7 , f = 50 Hz, Uz = 500 V. The results of the 
simulation are presented in Fig. 3. Comparing them to the 
simulation and experimental data discussed in [11-13] we 
can see again that the model also meets the requirements 
concerning the accuracy of approximating the current and 
voltage waveforms in GA plasma generators, especially of 
high power. 

 

 
 
Fig. 3. Current and voltage waveforms in a GA plasma generator 
simulated by means of the Cassie-Berger model. 

 
Simulations of the GA plasma generator were also 

performed with the use of the Novikov-Shellhase (20) and 
Cassie-Berger (21) integral models. Assuming the same set 
of parameters as it was done in the differential models, we 
obtain identical results as those presented in Figs 2 and 3.  

 
Conclusions  
1. The differential models of GA offer an intuitive approach 

to simulating the processes, with a relatively small 
number of parameters. They are also easy to interpret in 
physical terms.  

2. The integral models of the GA discharge match the 
differential ones in their functionality. They also provide 
an alternative way of a computer implementation but do 
not in fact offer any advantages over the differential 
ones. 

3. The mathematical models of the GA discharge 
presented are valid for plasma generators of low and 
high power, which results in their universality and 
potentially broad spectrum of applications. 
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