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Streszczenie. W artykule zaprezentowano wyniki rozważań na temat możliwości optymalno-czasowego sterowania  suwnicą 3D. 
Zaimplementowano ideę optymalnych trajektorii sąsiadujących w celu zapewnienia odporności sterowania optymalno-czasowego, obliczonego na 
podstawie nieliniowego modelu. Regulator LQ nadzoruje proces regulacji i dodatkowo eliminuje niepożądane własności trajektorii optymalnej. 
Zamieszczono krótkie omówienie wyników eksperymentalnych przeprowadzonych zarówno w otwartej jak i zamkniętej pętli sterowania. Możliwości 
optymalno-czasowego sterowania  suwnicą 3D 

  
Abstract. This paper concerns the time-optimal control of 3D crane, based on a tenth order nonlinear mathematical model. The idea of neighboring 
optimal trajectories is employed to ensure robustness of the time-optimal control calculated for the nonlinear model. An LQ controller supervises the 
control process and additionally eliminates unwanted properties of the optimal trajectory. The results of open-loop and closed-loop experiments are 
discussed. 
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Introduction 

A crane control task almost always relies on a trade-off 
between the time of transport and payload oscillations. 
Usually, faster transport causes greater swings of the 
payload which forces the operator to slow down the crane 
cart. An additional factor which makes the cranes working in 
open air slower are winds. It is thus natural that good 
solutions of the crane control problem are such that move 
the payload along a time-optimal trajectory with oscillations 
as small as possible, and the control algorithm is robust to 
disturbances. 

In many papers 2D crane models are considered [1][6]. 
The presented controllers are usually based on linear 
models and it is assumed that the oscillations of the 
payload are so small that the trigonometric relations may be 
neglected [1][5]. This level of accuracy may be unsatisfying 
when the time-optimal solution is needed [7][9]. Frequently, 
the time-optimal controls are of bang-bang character [6][8]. 
The greater the admissible oscillations, the more effective 
the time-optimal controller and in consequence, the swings 
of the payload may be so large that the above assumption 
is no longer valid.  

This paper concerns the time-optimal control of 3D 
crane, based on a tenth order nonlinear mathematical 
model. The idea of neighboring optimal trajectories is 
employed to ensure robustness of the time-optimal control 
calculated for the nonlinear model [9]-[12]. An LQ controller 
supervises the control process and additionally eliminates 
unwanted properties of the optimal trajectory. Its 
parameters (entries of a 3 x 10 matrix) are computed with 
the use of a linearized model, while all simulations of the 
crane behavior are based on the 3D nonlinear model. The 
results of open-loop and closed-loop experiments are 
discussed. 

 
Laboratory model of 3D crane 

The results presented in this paper concern a laboratory 
model of gantry crane, manufactured by the Inteco Co. Ltd. 
(Fig. 1). Although the laboratory crane is not a copy of a 
real industrial one, in many aspects its behavior is similar 
[13].  

The model is 1 m long, 1 m high and the payload may 
be hoisted up to 1 m. The mass of the payload is equal to 1 
kg. The cart can move in two directions. Its position is 
measured by two encoders. The payload may be shifted up 
or lowered, with the length of the rope measured by an 
encoder. The cart has a mechanical unit mounted, which 
measures two angles of the payload with the use of two 
encoders. 

 
Fig.1 The laboratory crane model 
 
 The angles describe the position of the payload 
referenced to the cart. The crane has three DC motors 
installed, two for driving the cart and one for hoisting the 
payload. The motors are controled from a PC computer . 
The system is integrated with the Simulink environment. 
Some issues concerning vlocity control of the crane are 
considered in [13]. 

 
Mathematical model 

Figure 2 presents forces acting in the crane system. It is 
assumed that five quantities are accessible: xc denotes the 
position of the cart in the x direction; yc denotes the position 
of the rail with the cart in the y direction; R denotes the 
length of the rope;  denotes the angle between the x axis 
and the lift-line;  denotes the angle between the negative 
direction on the z axis and the orthogonal projection of the 
lift-line onto the yz plane. 

The Cartesian coordinates of the payload are denoted 
by xp, yp and zp. Denote the mass of the payload by mp, the 
mass of the cart by mc, and the mass of the moving rail by 
mr. Fx is the control force driving the cart along the rail, Fy is 
the control force driving the rail with cart in the y direction 
(perpendicularly to the rail), and FR is the force controlling 
the length of the lift-line. The respective friction forces are 
denoted by Tx, Ty, and TR.  
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Fig. 2. Forces acting in the 3D crane system 
 

It is assumed that the friction is proportional to the 
respective velocity component 
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The controls are connected with the control forces by 
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The resulting set of equations is solved with respect to 
second derivative of: xc, yc, R, α and β. To this end define 
state variables and introduce some auxiliary notations  
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. The symbol of the state variables may collides with the 
notation of the x direction in the Cartesian system but the 
author decided not to change this because the meaning of 
the variables always stems from a context and this 
depiction is popular among engineers.  

The reduced controls, with the friction terms subtracted, 
are defined by 

1033342222111        ,     , xkuNxkuNxkuN  . 

Finally the ten state equations describing the dynamics of 
the crane are as follow 
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The values of the parameters obtained by identification 
experiments are as follows:  

1 rp mm kg, 14cm kg, 

1
1 s350 k , 1

2 s375 k , 1
3 s416 k .  

A more detailed description of the mathematical model 
may be found in [14] 
 

Time-optimal experiment 
Classic crane control consists of three phases.  

 Starting phase. The cart is accelerated and the payload 
shifted up. Oscillations of the payload should be minimized 
and the crane should be prepared to the second phase. 
 Transport phase. The payload is moved (with constant 
speed) to a vicinity of the desired position. 
 Terminal phase. The payload is put down, the crane 
stopped and the oscillations damped.  

The experiment presented below consists only of the 
starting phase and the terminal phase. The middle phase is 
omitted because the respective control problem is less 
interesting in our setting. The control task in the first part of 
the experiment is to steer the crane from a point A in the 
state space, with 

(3)  cx – 0.425 m, cy 0.2 m, π
2
1  rad,  R = 0.7 m 

(only nonzero state components are shown), to a point 
B with 

 

(4) cx – 0.2 m, cy 0.2 m, cy 0.1 m/s, π
2
1  rad, R 

= 0.5 m. 

At the end of the first phase, the payload should hang 
vertically without oscillations and the cart with payload 
should move in the y direction with the transportation speed 
of 0.1 m/s. Note that that the payload is shifted up to a 
desired height. 

Point B is the initial state for the second phase of the 
experiment. The control task is to move the payload to a 
destination point, to stop the crane and to eliminate 
oscillations generated by the braking cart. This phase 
should end at the target state C where 

(5)   cx – 0.2 m, cy 0.45 m, π
2
1  rad,  R = 0.7 m. 

At C, the cart is stopped. The payload is lowered to the 
original height and its oscillations are damped.  

The time-optimal controls have been calculated for both 
phases, for bounded control forces:  

5.54|| xF N, 60|| yF N, and ]4.29,8.9[RF N.  

Figure 3 presents a selected time-optimal control Fx 

which moves the payload in x direction from point A through 
point B to point C. Figure 4 shows the motion of the payload 
(angle α ) when the calculated time-optimal control forces 
are fed to the real crane. Dotted line shows the time-optimal 
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trajectory. It can be seen that the results of the open-loop 
control in the laboratory system are in fairly good 
accordance with the assumptions (4) and (5). The time-
optimal experiment more detailed presented may be found 
in [15]. 

 
Fig. 3. Control force in x direction 

 
Fig. 4. Movement of payload – angle , simulation result – dotted 
line, open-loop experiment – solid line 
 

Optimal LQ Controller 
The aim of this section is to present a way of 

constructing a control algorithm which solves the problem of 
tracking a desired trajectory. All deviations from the desired 
trajectory, which may differ from the reference trajectory, 
should be eliminated optimally according to a performance 
index S. 

The Linear Quadratic (LQ) controller is a solution of the 
optimal control problem for linear systems with a quadratic 
performance index. Therefore, a model linearized around 
the reference trajectory x  and reference control u  has to 
be used. The linearized model is valid only in a sufficiently 
small neighborhood of the reference trajectory, so the LQ 
controller works properly only in that neighborhood. 

Static friction is omitted in the construction of the LQ 
controller. To obtain exactly the same trajectories in the 
presence of static friction as in the model without it, the 
calculated control u1 should be replaced with u1+Ts1sgnx2, 
the control u2 with u2+Ts2sgnx4, and the control u3 with u3 -
 Ts3sgnx10. In practice, the term sgnx2 is replaced with sgnu1, 
sgnx4 with sgnu2, and sgnx10 with -sgnu3. Because of the 
small inertia of the cart the errors caused by this 
simplification can be neglected. 

Below, a linear-quadratic controller is constructed. It 
makes the system track the so called desired trajectory. It is 
possible to change the reference trajectory at the 

construction stage according to one’s requirements. This 
modification determines the desired trajectory. 

Let us write down the 3D crane equations in the 
following general form 
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are also given. Both the reference vectors are obtained as 
simulation results, so they fulfill (6). Define the deviations of 
state and control, xxx   and uuu  . The 
linearized system, determined at the reference point has the 
form 
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A reduction of unwanted properties of the reference 
trajectory x  (e.g., too great oscillations of the payload) may 
be achieved thanks to the appropriate construction of the 
quadratic performance index S 
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is the desired trajectory. Assume  

0 TPP , 0 TQQ  and 0 TVV . 

The unique optimal control deviation Δu*(t) which 
minimizes the performance index (9) on the trajectories of 
(8), and the corresponding optimal state deviation Δx*(t) 
fulfill the equality 
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K(t) is a symmetric, positive semidefinite 10 x 10 matrix 
which is a solution of the Riccati equation 
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with the final condition K(T) = P. The vector function k(t) is 
a solution of the equation  

(13) ],0[,)( 1 TtQzkABKBVk   TT  

with the final condition k(T) = –Pz(T).  

 

0 2 4 6 8 
-60 
-40 
-20 

0 
20 
40 
60 

t [s] 

Fx [N] stage boundary 



PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 92 NR 2/2016                                                                                        209 

 
Fig. 5. Appliance of the linear-quadratic controller. 
 

The reference trajectory x  and the reference control u  
have been obtained in the simulation of the system (6). The 
reference control u , fed into the laboratory crane makes 
the model move along a trajectory which is similar to x . 
Practically, both trajectories always differ. Figure 5.  
presents the idea of using the linear-quadratic controller. 
 

Robustification of Time-optimal Trajectory with the LQ 
Controller 

Robustification of the time-optimal trajectory relies on 
tracking it with an LQ controller and optimal elimination of 
all deviations from the desired trajectory. Optimally, means 
according to the performance index S (9). The performance 
index S is constructed in such a way that it gives a 
possibility to change the reference trajectory (in this case 
time-optimal) to a desired trajectory (10).  

In the experiment presented below, the controller follows 
the desired trajectory, which is modified by the function z(t) 
(10) in order to avoid oscillations of the payload. The 
controller “tries” also to stabilize the payload, even if it 
should swing according to the reference trajectory. 
Oscillations in the reference trajectory are presented below 
in Figures 14 and 15. 
 

Construction of the controller. 
At the beginning of the experiment the matrix K(t) (12) and 
the vector k(t) (13) were calculated off-line for a unit matrix 
V and  

(14) 

)5000,102,6,300,6,300,100,900,100,900(diag 6Q  

The weights in the matrix Q are lowered to 100 for the 
cart velocity components and to 6 for the angular velocities 
of the payload. This is caused by the poor quality of the 
velocity signals. They are thus almost totally eliminated 
from the control process. 

The much higher values of Q9 and Q10 than the values 
of other components of the diagonal of Q are due to the 
model scale. To explain this, write the optimal control 
correction corresponding to a state deviation x in the form 
Δu= –WΔx–w where W(t)=V-1B(t)TK(t) and w(t)=V-1B(t)Tk(t). 
Let us first consider the control correction caused by an 
error equal to 1 cm in the rope length. We neglect its first 
two components as |W13| and |W23| are much less than |W33| 
(see Fig. 10). Hence Δu3= –W33Δx9–w3≈–14– w3. After 
rescaling by mc, we obtain ΔFR≈–14– w3 [N]. Suppose now a 
similar error in the cart position, Δx1=0.01m, with other state 
deviations equal to zero. Since |W21| and |W31| are much 
less than |W11| (see Fig. 7), we neglect two last components 
of the corresponding control correction. The first component 
is Δu1=–W11Δx1–w1≈–0.3– w1. After rescaling by the factor 
mw=14kg, we get ΔFx≈–4.2– 14w1 [N]. The weights Q9=2·106 

and Q1=900 give similar corrections of the control forces FR 
and Fx for a 1 cm error of the corresponding state 
deviations. Analogously, the deviations of the angles  and 
 equal to 0.02 rad cause similar force corrections, 
respectively ΔFx≈–5.6– 14w1 [N] and ΔFy≈–6– 15w2 [N]. 

The function z(t) which defines the desired trajectory is 
assumed as follows 

(15) T)0,0,,,,,0,0,0,0( 87652
xxxxz   . 

This means that no changes are introduced to the cart 
movement and rope length, but the desired angle  is equal 
to /2, the desired angle  is 0 and the desired angular 
velocities are equal to zero.  

 
Fig. 6. Vector )()( tktB T , numbers denote vector components 
 

Figure 6 presents the calculated vector B(t)Tk(t) that 
appears additively in the right-hand side of the control 
formula. The values of the vector are determined by the 
desired trajectory. If the desired trajectory were equal to the 
reference one, the vector k(t) would be equal to zero. 

Figures 7 – 10 present four chosen columns of the 
matrix B(t)TK(t). The first column of the control matrix 
(Fig.7) is responsible for controlling the cart motion in the x 
direction.  

 
Fig. 7. Column 1 of B(t)TK(t) 
 

The first component of the column, which influences u1 
after multiplication by x1, has the biggest value. Other 
components have a weak effect on the movement in this 
direction. Similarly, the first component in column five has 
the biggest value (Fig.9). It is responsible for tracking the 
angle , which depends on the control in the x direction. 
The third column shown in Figure 8 is responsible for the 
cart movement in the y direction and has the second 
component the biggest. The ninth column (Fig.16) controls 
the rope length, so the third component is the biggest. 
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Fig. 8. Column 3 of B(t)TK(t) 
 

 
Fig. 9. Column 5 of B(t)TK(t) 
 

 
Fig. 10. Column 9 of B(t)TK(t) 

 

Experiment. 
The LQ controller presented above was applied in the 

laboratory crane model according to the scheme in Figure  
 

 
Fig 11. Block diagram of the control loop with LQ controller 

 
The LQ controller is based on the mathematical crane 

model which does not include static friction, therefore it is 
necessary to compensate it. Thanks to the compensation 

block, the laboratory model behaves (for the LQ controller) 
like an object without static friction. Since the control u  is 
calculated for the scaled model, a scaling block has also to 
be added to obtain the control forces Fx, Fy, FR. 

Figures 12 – 19 present results of the closed loop 
experiment with the LQ controller constructed according to 
the above assumptions. Although the desired movement of 
the cart is the same as the reference one, both trajectories 
differ clearly. The differences come from the vector V-

1B(t)Tk(t) which is added to minimize the payload swings. 

 
Figure 12. Movement of the cart in x direction, reference trajectory 
– dotted line 
 

 
Fig. 13. Movement of the cart in y direction, reference trajectory – 
dotted line, closed-loop experiment – solid line 

 

The payload is swinging less in the closed-loop 
experiment than in the open loop one (Fig. 14 and 15). It 
also swings less than in the reference trajectory.  

 

 
Fig. 14. Angle , open-loop experiment – dotted line, closed-loop 
experiment – solid line 
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Fig. 15. Angle , open-loop experiment – dotted line, closed-loop 
experiment – solid line 
 

Let us introduce indexes which help to estimate the 
controller effectiveness. For the angle  and for the angle  


7.8

0
ang d|)(| ttS 

  
 
7.8

0
2ang d|)(| ttS 

.  

The smaller value of the index, the smaller swings of the 
payload. Table 1 contains values of the calculated 
performance index for the reference, open-loop and closed-
loop trajectories. The results show good effectiveness of the 
LQ controller which is equal to 34.2% for the angle  and 
25.7% for the angle . 
 

Tab. 1. Values of the performance index Sang for the angles  and  

 
Sang for reference 

trajectory 
Sang for open-loop 

experiment 
Sang for closed-loop 

experiment 

 0.7183 (100%) 0.6894 (96%) 0.4725 (65.8%) 
 0.5879 (100%) 0.6102 (103.8%) 0.437 (74.3%) 

 

 
Fig. 16. Control force Fx, reference trajectory – dotted line, closed-
loop experiment – solid line 
 

Figures 16, 17 and 19 show changes made in the 
control forces by the controller. The smallest corrections 
were made to the FR force, and the rope length is very well 
tracked (Fig. 18 – differences are difficult to notice). Bigger 
improvements of the Fx and Fy forces are caused by the 
desired  and  trajectories which seriously differ from the 
reference ones. 
 

 
Fig. 17. Control force Fy, reference trajectory – dotted line, closed-
loop experiment – solid line 
 

 
Fig. 18.  Control force Fx, reference trajectory – dotted line, closed-
loop experiment – solid line 
 

 
Fig. 19. Control force FR, reference trajectory – dotted line, closed-
loop experiment – solid line 
 

Conclusions  
The presented mathematical model of 3D crane requires 

a lot of numerical calculations, but the quality of the model 
allows construction of very effective controllers. 
Furthermore, at the present time when the PC based on 
core i7 becomes a standard machine, the complication of 
the model is no longer a problem. The physical character of 
the model equations allows the identification process to be 
done in a simple, intuitive and fast way. 
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The simulations and experiments show that it is possible 
to control the crane in a time-optimal way basing on its 
mathematical model. Usually, such controls contain many 

switches. This feature is responsible for generating 
oscillations of the payload during the shifting up or lowering 
phase.  

The proposed LQ control algorithm partly resolves the 
problem of oscillations. After its implementation for tracking 
the desired trajectory the oscillations are reduced by 25% to 
35%. Of course, the presented method changes the time-
optimal control to suboptimal. How much the new control 
becomes suboptimal, depends on the force margin that is 
assumed for the controller. The more accurate model and 
smaller level of noise, the smaller force margin is needed. 

A more effective way of tracking the desired trajectory 
might be an algorithm which changes the switching times, 
but this algorithm does not resolve the problem of swinging 
payload, which is critical for cranes. 
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