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Streszczenie. W artykule zaprezentowanie zastosowanie metod redukcji szumu w sygnałach emisji akustycznej towarzyszących zjawisku 
drzewienia dielektryków stałych, w szczególności żywic epoksydowych, opartych na falkowej analizie sygnałow. Opisany został algorytm usuwania 
szumów z sygnału m. in. algorytm miękkiego oraz twardego progowania stworzonych przez Donoho i Johnsona. Wszystkie obliczenia wykonano w 
Matlabie z wykorzystaniem dodatku Wavelet Toolbox. Zastosowanie metod redukcji szumu w sygnałach emisji akustycznej towarzyszących 
zjawisku drzewienia dielektryków stałych, w szczególności żywic epoksydowych 

 
Abstract. The following paper presents application of methods of noise reduction in acoustic emission signals, accompanying phenomenon 
electrical treeing of solid dielectric such as epoxy resin, based on time-frequency signal analysis. For signal estimation was applied method of soft 
and hard thresholding described by Donoho and Johnson. All calculations ware obtained with use of Matlab software, especially Wavelet Toolbox. 
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Introduction 
 Major factor in solid dielectrics, used as insulation for 
high-voltage devices, are partial discharges (PD). They are 
present on the surfaces of dielectrics or in their structures, 
causing deterioration of electrical insulation properties. With 
PD occurring in solid dielectrics is often linked to the 
electrical treeing process involving the formation of a 
conductive or semi-conductive dielectric channels, taking 
the shape of a tree. Tubular discharge causes the further 
development of the tree, leading eventually to low-
resistance short circuit. 
 Current research on PD, in particular on electrical 
treeing phenomena relate to either the same process in 
modern insulating materials [1] or relating to the use new 
and improvement of well-known research methods [2]. One 
of the non-invasive methods of examination PD is AE 
method consists in analyzing the acoustic wave propagating 
in a discharge surroundings. 
 The authors of the article in their research involved the 
study of using an AE method in solid materials such as 
epoxy resins used for insulation of i.e. high voltage cables. 
 The paper presents an application of wavelet transform 
DWT for filtration recorded acoustic signals.  
 
Measurement stand and analysis 

To study process of electrical treeing was used acoustic 
emission method (AE), involving the measurement, acqu-
isition and analysis of acoustic signal accompanying the 
process. The measurement stand (Figure 1) and method of 
measurements was described in detail in [3] and [4]. 
 
 
 
 
 
 
 
 
Fig.1. Measurement stand for AE signals accompanying electrical 
treeing [based on 1] 

 

Characteristic features of studied phenomenon are 
small, comparable to noise level, amplitudes of vibrations. 
Therefore, prior to submission to the recorded signals 
analysis it is required to reduce the noise. The complexity of 
the process of formation of the acoustic wave, non-
deterministic nature of its parameters and the presence of 
strong interference mean that it becomes necessary to use 

modern signal processing methods. The article presents the 
filtration method with the use of discrete wavelet analysis. 
 
Multiresolution signal decomposition 
 The idea of wavelet analysis is representation of signal 
in time-frequency (equivalent to time-scale) is described in 
equation: 
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where: a – scale, x – signal in time domain, t – time, γ – wa-
velet function, c - wavelet coefficient for scale-time domain. 
 In many cases for complete representation of underlying 
signal sufficient is wavelet transform calculated in discrete, 
dyadic domain of scale and time, such that: 
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where: m – discrete order of signal representation, n - time 
shifting. The transformation described in such a discretized 
time-frequency domain is called Discrete Wavelet 
Transform (DWT) and is defind by: 
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where: dm,n – wavelet coefficient for n-th time shifting and m-
th dilatation of wavelet function gm,n(t) 
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Fig. 2. Discrete Wavelet Transform algorithm 
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 In this case signal on every discrete m-th level of 
decomposition, after 2m times downsampling, can be 
separated to lowpass band and its complement to 
decomposition form lower level with use of pair of lowpass 
and highpass filter (Quadrature Mirror Filters QMF). Fig.2 
shows algorithm of such a representation. 
 Described algorithm allows to introduce transform body 
at k-th level (for k < m0) as a projection of the analyzed 
signal at the base of time shifted functions Φ(t) (hereinafter 
referred to as scaling functions) and their orthogonal 
complement - base functions ψ(t)[8]: 
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where: m – order of decomposition for base function, m0 - 
order of decomposition for base function and: 
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and: 
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Frequency spectrum of scaling functions Φ(t) is low-
pass, so coefficients cm,n contains low-pass part of signal. 
The function at the k-th level, acts as a low pass filter, the 
coefficients h0(k) is a linear combination of the scaling 
function from level k + 1: 
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Frequency spectrum of wavelet function ψ(t) is band-
pass filter (witch completes scaling function spectrum). It 
can be shown, that wavelet function at level k can 
interpreted as high-pass filter with coefficients h1(k), which 
are linear combination of wavelet functions at lower than k 
levels: 
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Such a multi-frequency signal representation allows to 
separate from signal generally (low frequency signal), and a 
detail (approximations signal for k-th order). Figure 3 shows 
part of recorded signal (a) and its FFT (b). Figure 4 shows 
five level decomposition of signal form Figure 3. 
 
DWT signal denoising 

For further consideration let be recorded signal as 
equation: 
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where: x(t) – recorded signal, v(t) – unknown real value of 
measured AE signal, e(t) – difference between recorded 
signal and real value (measurements error). Figure 3 shows 
samples of measured signal and its Fast Fourier Transform. 
It clearly shown that recorded signal is very noised 
(SNR=5,55 – see summery). Frequency of AE signal is 
between 15 and 40 kHz, rest part of signal is white noise. 
 The wavelet approximation of measured signal from 
equation (1) can be expressed as: 
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where: <x,gk> - wavelet transform of measured signal, 
<v,gk> - wavelet transform of AE signal, <e,gk> - wavelet 
transform of error (noise) signal, gk – orthogonal base of 
functions at k-th order. 

 In order to de-noise signal we can define estimator of 
AE signal in wavelet domain: 

(10) 





1

0

][,ˆ
N

k
k kgxX  , 

where – θ[k] – adaptively selected, for each implementation 
of the signal v[n], coefficient of value from set {0,1}. 

 
Fig.3. Recorded signal: a) time domain b) frequency domain (FFT) 

 
Fig.4. Multiresolution decomposition of signal form Fig. 2 with use 
of Daubechies wavelet (denoted as ‘db10’ in Matlab). 
 
 Such a definition of estimator eliminates from recorded 
signal selected k-th order decomposition (for θ[k] equal to 
zero). It now remains to specify the criterion according to 
which are assigned θ[k] values for the k-th order of 
decomposition, thus criteria for the k-th decomposition. For 
this purpose a mean square error estimation of signal v[n] 
described the formula: 
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Additionally insert to the formula (8) noise variance equal to: 
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and insert relationship (9). Then the final dependence for 
mean square error is: 
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To minimize mean square error, θ[k] derivative of (11) must 
be equal to zero for each order k: 
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After simplify equation (12) give formula for θ[k] at k-th 
order: 
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Wavelet signal approximation with method of soft and 
hard thresholding 
Presented earlier estimation method makes during 
implementation difficulties, mainly from ignorance of 
functions v[n], resulting from the variability of the acoustic 
wave produced during electrical treeing. In addition, the 
algorithm removes, through the function of θ[k], the selected 
signal decomposition. More accurate noise reduction can 
be achieved applying filtration method described by 
D. L. Donoho and I. M. Johnstone in [3, 4]. These authors 
report a method of estimating the signal from the noisy 
samples of the use of certain relationships: 
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The solution is to correct each of the wavelet coefficients by 
means of a non-linear wavelet shrinkage function whose 
value depends on the wavelet coefficients values. 
Donoho and Johnston in [6], in addition to the criterion of 
minimum mean square error introduced the smoothness of 
the functions using the projection functions for Besova 
functional space. The authors proposed two variants of 
wavelet shrinkage functions. First variant called soft 
thresholding function: 
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and second hard thresholding function: 
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where: λ – of threshold level. 
Figures 5a and 5b show an example of a plot for 

threshold function of soft and hard thresholding function, 

depending on a value of wavelet coefficient. 

 
Fig.5. Example of wavelet shrinking function θ for: a) soft 
thresholding b) hard thresholding. 
 

The primary determinant of the quality described above 
methods for noise reduction is the choice of an appropriate 
threshold level for each signal. The authors of soft and hard 
thresholding methods proposed in [6] an algorithm called 
universal trigger. The trigger level is determined by using 
the formula 

(20) NN /)log(2  , 

where: λ – threshold level, σ – noise level, N – length of 
input signal (number of samples). 
Thus, clearly showing that the quality of the algorithm 
depends mainly on the length of the analyzed signal 
samples. For the analysis of a small sample quantities 
method may become insufficient.  
 In [10] Luisier et al proposed shrinkage function (SURE-
shrink function) defined as: 
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where: K – number of terms, ak – parameters and φk defined 
as: 
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It is shown that value of K ≥ 2 results of shrinking 
function is quite similar [9].In practical application clear 
signal wavelet coefficients are unknown. In described 
algorithm ak parameters are determine with use of Stein’s 
Unbiased Risk Estimator (SURE) as mean squared error 
(MSE) estimator. 
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Figure 6 shows part of recorded noised signal and 
estimations of clear signal with used of described in article 
algorithms. For validation of presented methods SNR was 
calculated as: 
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where: σx – signal variance, σn –noise signal variance. 
 

To get SNR value from recorded signal, noise variance 
must be estimated. In [10] a robust estimate of σn is given 
by: 
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where MAD is median absolute deviation of finest wavelet 
coefficients. 
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Fig.6. Example of signal estimation for described algorithms: a) noised signal, b) soft thresholding with universal threshold, c) hard 
thresholding with universal threshold, d) SURE-shrinkage function, e) heuristic variant of SURE-shrinkage function. 
 
Table 1 shows SNR value estimated with for signals from 
figure 6. 
 
Table 1 Comparison of estimated SNR value for wavelet shrinkage 
methods. 

Signal SNR [dB] 
Noised 5,5519 
Soft Thresholding 6,0317 
Hard Thresholding (Universal Treshold) 10,927 
SURE-shrink 9,7977 
SURE-shrink - heuristic variant 9,1974 

 
Summary and comments 
 The article presents application for discrete wavelet 
transform in study on PD in epoxy resins. It is clearly shown 
that wavelet shrinkage methods give good result for AE 
signal noise reduction. In studied example best algorithm 
gives almost two times higher SNR value. 
 Described in the paper standard method of hard 
thresholding with universal threshold gives best results, 
better than SURE-shrink functions. It can be explained that 
in this application, when sampling frequencies are much 
higher than frequencies of AE signals in studied 
phenomena, high resolution of signal gives possibility to get 
high samples number N for decomposition. In presented 
example N = 1250 samples. 
In conclusion, it should be noted that the solution consisting 
in the analysis of signals with low SNR requires analysis 
and simulation. These studies are designed to determine 
the best methods to minimize the impact of disruption on 
the result for the issues under consideration. In the present 
case, the AE signals associated with the electrical treeing 
process are a type of relaxation with amplitudes 
comparable to the noise, the best proved to be one of the 
basic methods for removing noise. 
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