
100 PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 92 NR 5/2016

Dominik ŁUCZAK, Adrian WÓJCIK

Politechnika Poznańska, Instytut Automatyki i Inżynierii Informatycznej

doi:10.15199/48.2016.05.19

DSP implementation of state observers for electrical drive with
elastic coupling

Streszczenie. W pracy przedstawiono wyniki implementacji trzech dyskretnych metod estymacji wektora stanu układu dynamicznego – obserwatora
Luenbergera, filtru Kalmana i estmatora neuronowego. Implementacji dokonano w języku C++, w środowisku VisualDSP 5.0, przy założeniu
wykorzystania algorytmów do obserwacji stanu części mechanicznej napędu elektrycznego, charakteryzującego się sprężystym połaczeniem z
maszyną roboczą. Wykorzystano technikę programowania obiektowego. Wyniki implementacji trzech dyskretnych metod estymacji wektora
stanu układu dynamicznego – obserwatora Luenbergera, filtru Kalmana i estmatora neuronowego

Abstract. Article presents the results of implementation of three discrete methods of estimation of the state vector of the dynamic system -
Luenberger observer, Kalman filter and neural network estimator. Implementation was done in C ++, in an VisualDSP 5.0 environment, assuming the
use of algorithms to observe the state of the mechanical part of the electric drive, characterized by a elastic connection with the working machine.
Autors had used object-oriented programming technique.

Słowa kluczowe: obserwator stanu, procesor sygnałowy, implementacja w C++, napęd elektryczny, połączenie sprężyste.
Keywords: state observers, DSP, implementation in C++, electric drive, elastic coupling.

Introduction

Requirements for modern electrical drives - especially
dynamic characteristics - often necessitate the need for
control based on whole state of the system, not only directly
measured values. This implies the need to estimate the
values that cannot be measured.

Popular and interesting algorithms for performing this
task are Luenberger state observer [1], [2], Kalman filter [3],
[4], and neural-network-based [5] estimator. Applying these
methods in control system requires implementation that let
both simple initializations as well as easy obtains a result of
each iteration. The specific elements of control and
measurement system require application of proper software
[6]. Principle of separation of estimation and control suggest
the possibility of encapsulation of these methods. Therefore
it is justifiable to use object-oriented techniques.

Implementation was based on the assumption that the
methods are used to estimate state vector of mechanical
part of electrical drive. The block diagram of the system is
shown in Fig.1. Mechanical part of drive is two-mass
system with elasticity.

Fig.1. Drive structure

The electric motor works in the cascade structure. Inner
loop consists of electromagnetic torque (active current)

controller, power converter and electromagnetic part of the
motor. Outer loop consists of speed controller, closed
torque control loop and mechanical part of the motor.
Speed control is performed by the discrete PI controller.
Algorithm is executed by digital signal processor DSP.

Regardless of the method and mathematical model of
the system, the state observation is based on the
measurement of angular velocity of the shaft on the motor
side and knowledge of reference motor torque.

The article describes implementation of observers in
C++ with usage of object-oriented programing techniques.
Presented approach is one module of software framework
for electrical drives, which is under development by
research team.

Mathematical model of drive system
Mathematical model of the system is composed of three

elements: model of the mechanical part, model of closed
torque control loop and speed controller. In most articles
two-mass mechanical system is considered [7]–[10].

Two-mass system with elasticity is physical model of the
mechanical part of drive. Estimating the state vector
requires state-space model. Angular velocity of the shaft on

the motor side 1 , on the load side 2 and torsion sT ,

were chosen as state variables (1).

(1)

1

2()

s

t

T



 
   
  

x

Inputs of the system (2) are electromagnetic motor

torque eT and load torque lT . Output of the system (3) is

angular velocity on the motor side 1 . This one is only

state variable which can be measured directly. It is also
necessary for speed control.

(2) () e

l

T
t

T

 
  
 

u

(3) 1()t y

Based on [11] state-space matrix can be written as (4).

PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 92 NR 5/2016 101

(4)

1 1

2 2

1 1

1 1

0 0 0

0 0 0

0 0 0

J J

J J

k k

   
   

     
      

A B

   1 0 0 0 0 C D

The parameters of the model present in the system

matrix A and input matrix B are: 1J , 2J - moment of

inertia respectively on the motor side and on the load side

(kgm2) and k - modulus of elasticity (kgm2s-2).
Luenberger observer and Kalman filter synthesis

requires discrete-time state-space model with sample time

s equal to algorithms iteration time. Based on [12] Tustin

transform was applied as discretization method, according
to formulas (5).

(5)

11 1
2 2

11
2

11
2

11 1
2 2

() ()

()

()

()

d s s

d s s

d s

d s s

 

 



 









  

 

 

  

A I A I A

B I A B

C C I A

D C I A B D

Obtained discrete-time model must be modified due to
fact that load torque cannot be directly measured. Input

matrix dB is therefore reduced to first column.

Assuming optimization of motor torque controller, closed
torque control loop can be modeled as first-order inertial

system with time constant T , time delay T d and gain

equal to torque constant Tk . In this case, black box model

is sufficient. Model of inner loop is described by continuous-
time transfer function (6).

(6) ()
1

T ds

T

Tk
G s e

s



 



Input of torque control loop is discrete-time signal

()e ref sT k . Zero-order hold interpolation was assumed.

Discrete parallel PI controller was applied as speed
controller (7). Based on [13], controller was tuned according
to formulas (8).

(7)
0

() () ()
k

s P s I s
n

u k K e k K e n  


  

(8) 2 1

2

2P I
c c

K K
 
  

 

Time constants of inertia of the motor shaft 1 and 2

and time constant of the motor shaft stiffness c are

expressed by formulas (9). Where N is nominal motor

angular velocity and e NT is nominal motor torque.

Controller output is limited to 1.5 e NT  . Clamping was

applied as anti-windup method.

(9)

1

1 1 2 2

1N N N
c

eN eN eN

J J
T T T k

    


 
      

 

State observers algorithms

Discrete full-order Luenberger observer and Kalman
filter are methods of estimating the state vector based on
discrete-time state-space model of the system. Neural
estimator is based on neural networks trained off-line with
measurement or simulation data. In all cases, the most
compact and clear notation - and implementation - is matrix
analysis. Application of object-oriented techniques allowed
to create class template matrix. Class provides an interface
for hardware implementation of basic operation of linear
algebra executed on DSP - addition, multiplication and
inversion. Subclass template vector is special case matrix -
a column matrix. As a result, observation algorithms were
implemented in C++, in a way resembling MATLAB
scripting language.

Each method has been implemented as C++ class. All
of them inherit from the base class state_observer,
containing the current state vector x_act and virtual member
function update(). Function update() performs single step of
algorithm.

Discrete full-order Luenberger state observer is method
applicable under the following conditions: system is
observable, discrete-time state-space model is well known
(the precise identification) and noise level in system is
insignificant. However, initial state of system is unknown.
Block diagram of algorithm as prediction observer is shown
in Fig. 2. Due to the assumption made on the system, both
input u and output y are scalar values.

Fig.2. Discrete full-order Luenberger state observer as prediction
observer

Equivalent description, which is also a basis for the
implementation, shown in the following pseudocode [14],
[15]:

1) update at time k :

(10)    1k k x x .

2) prediction at time k to 1k  :

(11)         1 ()d d d dk k u k y k k    x A x B L C x .

Listing 1. Body of the upadate() function, luenberger_observer
class (observer gain

dL designated as K)

vector<double>
luenberger_observer::update(double u, double y)
{
 // update
 x_act = x_next;

 // prediction
 x_next = Ad*x_act + Bd*u + K*(y ‐ Cd*x_act);

 // current (actual) state
 return x_act;
}

102 PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 92 NR 5/2016

Listing 2. An examples of definion of pointer to
luenberger_observer class object and call member function update(

// array of state observers
state_observer** observer = new state_observer*[3];

// class contructor
observer[0] = new luenberger_observer(Ad, Bd, Cd, Ld, x_init);

// result vector
vector<double> x_e(3, 0.0);

// Luenbeger observer update
x_e = observer[0]‐>update(input, output);

 Code in C++, shown in Listing 1.-2., presents body of
the member function update() in luenberger_observer class
and examples of definition of pointer to class object and call
function udpate().

An example of definition of pointer to class object

contains call class constructor. Observer gain dL is

constructor argument. Therefore this vector needs to be
specified and define outside of the class - implementation
does not provide methods of determination of the gain.

Kalman filter is extension of discrete state observer
concept. Problem of determination of the filter gain is
solved. Therefore kalman_filter class is derived class of

luenberger_observer. Filter gain K is optimal in sense of
minimize the variance of the estimation error. Standard form
of Kalman filter is current estimator (correction takes place
at update step, not prediction step). In Fig. 3. block diagram
of Kalman filter is shown - calculations related to the
determination of gain have been omitted. Kk is filter gain
computed at time k.

Fig.3. Kalman filter as observer

Complete description, including formulas for filter gain

K and estimation error covariance matrix P , which is a
basis for the implementation, was shown in the following
pseudocode [16], [17]:

1) computing gain at time k :

(12)         1
1 1T T

d d d dk k k


   K P C C P C R .

2) update and correction at time k :

(13)         1 1dk k y k k    x x K C x ,

       1dk k k  P I K C P .

3) prediction at time k to 1k  :

(14)      1 d dk k u k  x A x B ,

   1 T
d d dk k  P A P A Q .

Code in C++, shown in Listing 3.-4., presents body of
the member function update() in kalman_filter class and
examples of definition of pointer to class object and call
function udpate().

Listing 3. Body of the upadate() function, kalman_filter class
vector<double>
kalman_filter::update(double u, double y)
{
 // gain computation
 K = (P * Cd.tr()) / (Cd * P * Cd.tr() + Rd);

 // update and correction
 x_act += K*(y ‐ Cd*x_act);
 P ‐= K*Cd*P;

 // prediction
 x_next = Ad*x_act + Bd*u;
 P = Ad*P*Ad.tr() + Qd;

 // current state
 return x_act;
}

Listing 4. An examples of definion of pointer to kalman_filter class
object and call member function update()

// array of state observers
state_observer** observer = new state_observer*[3];

// class contructor
observer[1] = new kalman_filter(Ad, Bd, Cd, Qd, Rd, x_init, P_init);

// result vector
vector<double> x_e(3, 0.0);

// Kalman filter update
x_e = observer[1]‐>update(input, output);

Kalman_filter class constructor has more arguments
than its base class - although the solution to the problem of
determination of gain is built into the algorithm, it is
necessary to provide information about noises occurring in
the system. These information are stored in form of system

noise covariance matrix dQ and measurement noise

covariance matrix dR . Both matrices refer to a discrete-

time noise model, with a sampling time equal to algorithm
iteration time. It is also necessary to determine the initial

estimation error covariance matrix (0)P .

Fig.4. Neural-network-based state estimator

Neural estimator is implementation of set of neural

networks trained off-line. Each network estimates one of

PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 92 NR 5/2016 103

unknown state variables. For the assumed system "result of
estimation" is two elements vector - not, as in previous
cases - three elements vector. This is equivalent to
reduced-order state observer. Class implementation is
based on 2D array of matrix class objects. First array index
determines network number (state variable), second
determines network layer number. Every network contains
equal number of layers, use the same sets of activation
function (sigmoid for hidden layer, pure linear for output
layer) and takes identical input vectors. Number of neurons
in each layers can be different between networks. Fig. 4.
shows simplified block diagram of neural estimator for two-
mass system.

The implementation of multilayer, one-way, sigmoidal
neural network was based on [18]. Code in C++, shown in
Listing 5.-6., presents body of the member function update()
in neural_estimator class and examples of definition of
pointer to class object and call function udpate().

Listing 5. Body of the upadate() function, neural_estimator class
vector<double>
neural_estimator::update(double u, double y)
{
 // data processing
 vector<double> in = data_processing(u, y);

 // result vector
 vector<double> out;

 for(unsigned i = 0; i < net_number; i++)
 {
 out = in;

 // neural programs
 for(unsigned j = 0; j < layer_number; j++)
 {
 out = W[i][j]*out + b[i][j];
 out = activation_fcn(j, out);
 }

 x_act(i) = out(0);
 }

 // current state
 return x_act;
}

Listing 6. An examples of definion of pointer to neural_estimator
class object and call member function update()

// array of state observers
state_observer** observer = new state_observer*[3];

// class contructor
observer[2] = new neural_estimator(net_n, layer_n, delay, W, b);

// result vector
vector<double> x_e(2, 0.0);

// neural estimator update
x_e = observer[2]‐>update(input, output);

Functions data_processing() and activation_fcn() are
private member functions. First one forms input vector out
of current and previous samples of input u and output y .

Number of previous samples used by observer is
determined by class constructor third argument - delay.
Second function is layer activation function, supporting
vector class objects. The last two arguments of class
constructor - W and b shown in an example - are 2D arrays
of matrix class objects containing respectively network

weights and biases. Sizes of those arrays are determinate
by class constructor arguments net_n and layer_n.
Implementation do not provide training algorithms - weights
and biases are not modified during estimator iterations.

With a common base class for all estimation method,
presented implementation has a significant advantage. For
each class call update() function is identical. On Fig. 5.
class inheritance diagram is shown. Diagram was created
by Doxygen documentation generator.

Fig.5. Inheritance diagram for state observers algorithms classes

Simulation results

The electrical drive, shown in Fig. 1., was simulated in
MATLAB/Simulink environment. Comparative
implementation of state observers algorithms was done in
MATLAB script language. In Fig. 6. plots of input signals are

shown - reference angular velocity 1 ref and load

torque lT .

Fig.6. Control system input signals: reference angular velocity
(discrete-time) and load torque (continuous-time)

In Fig.7. plots of the responses of the control system are

shown - reference motor torque e refT and actual angular

velocity on the motor side 1 . Velocity oscillations are

caused by nature of analyzed system which was described
in detail in previous work [11], [13]. Those signals are input

data for estimation algorithms. Sample time s is equal to

100 µs. Simulation step size is equal to 1/100 of this value -
1 µs.

104 PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 92 NR 5/2016

Fig. 7. Response of the control system: angular velocity on the
motor side (discrete-time) and reference motor torque (discrete-
time)

Plots shown in Fig. 8. to 10. are results of simulation of

electrical drive in MATLAB/Simulink environment compared
with results of discrete estimation algorithms implemented
in C++, in VisualDSP++ 5.0 environment. Program was
executed on digital signal processor ADSP-21369, member
of the SHARC family.

For simulation purposes, discrete Luenberger observer
gain was determined. Dynamics of the estimation error is
equivalent to a dynamics of the Butterworth filter with time
constant equal to 10 ms. In Fig. 8 results of simulation and
estimation of unknown state variables are shown.

Fig.8. Estimation results - discrete full-order Luenberger state
observer

Kalman filter works in system with additive white
Gaussian noise. For simulation purposes, to measured

angular velocity 1 was added white noise of standard

deviation equal to 1 rad/s. In Fig. 9 results of simulation and

estimation of unknown state variables are shown. The
choice of matrices

dQ and
dR was experimental.

Fig.9. Estimation results - Kalman filter

Fig.10. Estimation results - neural estimator

Both Luenberger observer and Kalman filter

underestimate angular velocity 2 and overestimate

torsion sT during load. This is due to the fact that

mathematical model of the system do not contain
information on load torque. This effect is consistent with the
assumptions of algorithms. Solution to this problem could
be extension of observer structure shown in [19] or [20].
Objective-oriented technique will facilitate such
modifications.

Based on [18], for simulation purposes, neural networks
of neural estimator had following structure: 7 neurons of first
hidden layer (input layer), 8 neurons of second hidden layer
and 1 neuron of output layer. Input vector consist of current
and 3 previous samples of reference motor torque

e refT and

angular velocity
1 . Networks training was based on

PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 92 NR 5/2016 105

simulation data - CHIRP signal as reference motor torque
and responses of the control system to starting-up, braking
and reversing. In Fig. 10 results of simulation and
estimation of unknown state variables are shown.

Conclusions

The article presents objective-oriented implementation
of three state observers methods: Luenberger observer,
Kalman filter and neural estimator. Implementation was
dedicated to digital signal processor. Results of estimation
are in all cases consistent with assumptions and are
identical with result of comparative implementation done in
MATLAB/Simulink environment. Luenberger observer is
characterized by desired dynamics of estimation error.
Kalman filter properly performs estimation of state vector
under measurement noise. Neural estimator generalize
training data and estimate state variable properly also
during load.

Encapsulation of estimation methods was a success - all
necessary observers parameters and sub-algorithm are
classes members. Object-oriented techniques allow to use
both convenient syntax and hardware implementation of
operations on floating-point number arrays.

Further development of systematized object-oriented
library in C++ for electrical drive is planned. Main goal is to
enable easy collaboration between DSP and
MATLAB/Simulink environment, primarily in terms of neural-
network-based estimator.

Acknowledgment

The presented results of research were carried out
under the theme No. 04/45/DSPB/0135, which was funded
by the Polish Ministry of Science and Higher Education.

Authors: dr inż. Dominik Łuczak, Politechnika Poznańska, Instytut
Automatyki i Inżynierii Informatycznej, ul. Piotrowo 3a, 60-965
Poznań , E-mail: dominik.luczak@put.poznan.pl,

inż. Adrian Wójcik, Politechnika Poznańska, E-mail:
adrian.wojcik@student.put.poznan.pl

REFERENCES

[1] Szabat K., Tran-Van T., Kaminski M. , A Modified Fuzzy
Luenberger Observer for a Two-Mass Drive System, IEEE
Trans. Ind. Inform., 11 (2015), n.2, 531–539

[2] Kamiński M., Adaptacyjny-neuronowy obserwator Luenbergera
zastosowany w estymacji zmiennych stanu układu
dwumasowego, Przegląd Elektrotechniczny, 90 (2014), nr 6

[3] Drozdz K., Janiszewski D., Szabat K., Application of fuzzy
Kalman filter in adaptive control structure of two-mass system,
16th International Conference and Exposition in Power
Electronics and Motion Control (PEMC), 2014 575–578

[4] Dróżdż K., Szabat K., Adaptacyjne sterowanie układu
dwumasowego z wykorzystaniem rozmytego filtru Kalmana,”
Przegląd Elektrotechniczny, 90 (2014), nr 6,

[5] Kamiński M., Estymacja zmiennych stanu układu
dwumasowego za pomocą modeli neuronowych, Pr. Nauk.
Inst. Masz. Napędów Pomiarów Elektr. Politech. Wroc. Stud.
Mater., 69 (2013), n.33, 222–238

[6] Luczak D., DSP implementation of electric drive control system,
8th International Symposium on Communication Systems,
Networks Digital Signal Processing (CSNDSP), 2012, 1 –3

[7] Muszynski R., Deskur J., “Ds,” Iamping of Torsional Vibrations
in High-Dynamic Industrial Drive, IEEE Trans. Ind. Electron., 57
(2010), n.2, 544–552

[8] Villwock S., Pacas M., Application of the Welch-Method for the
Identification of Two- and Three-Mass-Systems, IEEE Trans.
Ind. Electron., 55 (2008), n.1, 457–466

[9] Deskur J., Pajchrowski T., Zawirski K., Speed controller for a
drive with complex mechanical structure and variable
parameters, 16th International Power Electronics and Motion
Control Conference and Exposition (PEMC 2014),762–767

[10] Saarakkala S.E., Hinkkanen M., Identification of two-mass
mechanical systems using torque excitation: Design and
experimental evaluation, 2014 International Power Electronics
Conference (IPEC-Hiroshima 2014 - ECCE-ASIA), 2489–2496

[11] Luczak D., Mathematical model of multi-mass electric drive
system with flexible connection, in Methods and Models, 19th
International Conference On Automation and Robotics (MMAR
2014), 590–595

[12] Bruschetta M., Picci G., Saccon A., A variational integrators
approach to second order modeling and identification of linear
mechanical systems, Automatica, 50 (2014), n.3, 727–736

[13] Szabat K., Orlowska-Kowalska T., Vibration Suppression in a
Two-Mass Drive System Using PI Speed Controller and
Additional Feedbacks mdash;Comparative Study, IEEE Trans.
Ind. Electron., 54 (2007), n.2, 1193–1206

[14] Luenberger D.G., An introduction to observers, IEEE Trans.
Autom. Control, 16 (1971), n.6, 596-602

[15] Radisavljevic-Gajic V., Linear observers design and
implementation, Conference of the American Society for
Engineering Education (ASEE Zone 1), 2014 Zone 1, 1–6

[16] Welch G., Bishop G., An Introduction to the Kalman Filter,”
2006. [Online] Available: https://www.cs.unc.edu/~welch/
media/pdf/kalman_intro.pdf

[17] Cazan I., Kalman filters, 2011. [Online]. Available:
http://www.colby.edu/math/program/honorsprojects/2011-
Cazan-Honors.pdf

[18] Bose B.K., Neural Network Applications in Power Electronics
and Motor Drives, IEEE Trans. Ind. Electron., 54 (2007), n.1,
14–33

[19] Serkies P.J., Szabat K., Adaptacyjna struktura sterowania z
predykcyjnym regulatorem prędkości dla układu napędowego z
połączeniem sprężystym, Pr. Nauk. Inst. Masz. Napędów
Pomiarów Elektr. Politech. Wroc. Stud. Mater.,(2011), n.31,
320–330

[20] Szabat K., Model obserwatora zmiennych stanu dla układu z
nieliniowym wałem mechanicznym, Pr. Nauk. Inst. Masz.
Napędów Pomiarów Elektr. Politech. Wroc. Stud. Mater., vol.
63 (2009), n.29, 355–368

