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Streszczenie. W pracy przedstawiono wyniki implementacji trzech dyskretnych metod estymacji wektora stanu układu dynamicznego – obserwatora 
Luenbergera, filtru Kalmana i estmatora neuronowego. Implementacji dokonano w języku C++, w środowisku VisualDSP 5.0, przy założeniu 
wykorzystania algorytmów do obserwacji stanu części mechanicznej napędu elektrycznego, charakteryzującego się sprężystym połaczeniem z 
maszyną roboczą. Wykorzystano technikę programowania obiektowego. Wyniki implementacji trzech dyskretnych metod estymacji wektora 
stanu układu dynamicznego – obserwatora Luenbergera, filtru Kalmana i estmatora neuronowego 
 
Abstract. Article presents the results of implementation of three discrete methods of estimation of the state vector of the dynamic system - 
Luenberger observer, Kalman filter and neural network estimator. Implementation was done in C ++, in an VisualDSP 5.0 environment, assuming the 
use of algorithms to observe the state of the mechanical part of the electric drive, characterized by a elastic connection with the working machine. 
Autors had used object-oriented programming technique.  
 
Słowa kluczowe: obserwator stanu, procesor sygnałowy, implementacja w C++, napęd elektryczny, połączenie sprężyste. 
Keywords: state observers, DSP, implementation in C++, electric drive, elastic coupling. 
 
 
Introduction 

Requirements for modern electrical drives - especially 
dynamic characteristics - often necessitate the need for 
control based on whole state of the system, not only directly 
measured values. This implies the need to estimate the 
values that cannot be measured. 

Popular and interesting algorithms for performing this 
task are Luenberger state observer [1], [2], Kalman filter [3], 
[4], and neural-network-based [5] estimator. Applying these 
methods in control system requires implementation that let 
both simple initializations as well as easy obtains a result of 
each iteration. The specific elements of control and 
measurement system require application of proper software 
[6]. Principle of separation of estimation and control suggest 
the possibility of encapsulation of these methods. Therefore 
it is justifiable to use object-oriented techniques. 

Implementation was based on the assumption that the 
methods are used to estimate state vector of mechanical 
part of electrical drive. The block diagram of the system is 
shown in Fig.1. Mechanical part of drive is two-mass 
system with elasticity.  

 

 
Fig.1. Drive structure 
 

The electric motor works in the cascade structure. Inner 
loop consists of electromagnetic torque (active current) 

controller, power converter and electromagnetic part of the 
motor. Outer loop consists of speed controller, closed 
torque control loop and mechanical part of the motor. 
Speed control is performed by the discrete PI controller. 
Algorithm is executed by digital signal processor DSP. 

Regardless of the method and mathematical model of 
the system, the state observation is based on the 
measurement of angular velocity of the shaft on the motor 
side and knowledge of reference motor torque. 

The article describes implementation of observers in 
C++ with usage of object-oriented programing techniques. 
Presented approach is one module of software framework 
for electrical drives, which is under development by 
research team. 

 

Mathematical model of drive system 
Mathematical model of the system is composed of three 

elements: model of the mechanical part, model of closed 
torque control loop and speed controller. In most articles 
two-mass mechanical system is considered [7]–[10]. 

Two-mass system with elasticity is physical model of the 
mechanical part of drive. Estimating the state vector 
requires state-space model. Angular velocity of the shaft on 

the motor side 1 , on the load side 2  and torsion sT , 

were chosen as state variables (1). 

(1) 

1

2( )

s

t

T



 
   
  

x   

Inputs of the system (2) are electromagnetic motor 

torque eT  and load torque lT . Output of the system (3) is 

angular velocity on the motor side 1 . This one is only 

state variable which can be measured directly. It is also 
necessary for speed control. 
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Based on [11] state-space matrix can be written as (4). 
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The parameters of the model present in the system 

matrix A and input matrix B  are: 1J , 2J  - moment of 

inertia respectively on the motor side and on the load side 

(kgm2) and k  - modulus of elasticity (kgm2s-2). 
Luenberger observer and Kalman filter synthesis 

requires discrete-time state-space model with sample time 

s  equal to algorithms iteration time. Based on [12] Tustin 

transform was applied as discretization method, according 
to formulas (5). 
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Obtained discrete-time model must be modified due to 
fact that load torque cannot be directly measured. Input 

matrix dB  is therefore reduced to first column. 

Assuming optimization of motor torque controller, closed 
torque control loop can be modeled as first-order inertial 

system with time constant T , time delay T d  and gain 

equal to torque constant Tk . In this case, black box model 

is sufficient. Model of inner loop is described by continuous-
time transfer function (6). 
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Input of torque control loop is discrete-time signal 

( )e ref sT k . Zero-order hold interpolation was assumed. 

Discrete parallel PI controller was applied  as speed 
controller (7). Based on [13], controller was tuned according 
to formulas (8). 

(7) 
0

( ) ( ) ( )
k

s P s I s
n

u k K e k K e n  


     

(8) 2 1

2

2P I
c c

K K
 
  

    

Time constants of inertia of the motor shaft 1  and 2  

and time constant of the motor shaft stiffness c  are 

expressed by formulas (9). Where N  is nominal motor 

angular velocity and e NT  is nominal motor torque. 

Controller output is limited to 1.5 e NT  . Clamping was 

applied as anti-windup method. 
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State observers algorithms 

Discrete full-order Luenberger observer and Kalman 
filter are methods of estimating the state vector based on 
discrete-time state-space model of the system. Neural 
estimator is based on neural networks trained off-line with 
measurement or simulation data. In all cases, the most 
compact and clear notation - and implementation - is matrix 
analysis. Application of object-oriented techniques allowed 
to create class template matrix. Class provides an interface 
for hardware implementation of basic operation of linear 
algebra executed on DSP - addition, multiplication and 
inversion. Subclass template vector is special case matrix - 
a column matrix. As a result, observation algorithms were 
implemented in C++, in a way resembling MATLAB 
scripting language. 

Each method has been implemented as C++ class. All 
of them inherit from the base class state_observer, 
containing the current state vector x_act and virtual member 
function update(). Function update() performs single step of 
algorithm.  

Discrete full-order Luenberger state observer is method 
applicable under the following conditions: system is 
observable, discrete-time state-space model is well known 
(the precise identification) and noise level in system is 
insignificant. However, initial state of system is unknown. 
Block diagram of algorithm as prediction observer is shown 
in Fig. 2. Due to the assumption made on the system, both 
input u  and output y  are scalar values. 

 

 
 

Fig.2. Discrete full-order Luenberger state observer as prediction 
observer 

 

Equivalent description, which is  also a basis for the 
implementation, shown in the following pseudocode [14], 
[15]: 

1) update at time k : 

(10)     1k k x x . 

2) prediction at time k  to 1k   : 

(11)         1 ( )d d d dk k u k y k k    x A x B L C x . 

 
Listing 1. Body of the upadate() function, luenberger_observer 
class (observer gain 

dL  designated as K) 

vector<double> 
luenberger_observer::update(double u, double y) 
{ 
  // update 
  x_act = x_next; 
   
  // prediction 
  x_next = Ad*x_act + Bd*u + K*(y ‐ Cd*x_act); 
   
  // current (actual) state 
  return x_act; 
} 



102                                                                               PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 92 NR 5/2016 

Listing 2. An examples of definion of pointer to 
luenberger_observer class object and call member function update( 
 
// array of state observers 
state_observer** observer = new state_observer*[3]; 
 
// class contructor 
observer[0] = new luenberger_observer(Ad, Bd, Cd, Ld, x_init); 
 
// result vector 
vector<double> x_e(3, 0.0); 
 
// Luenbeger observer update 
x_e = observer[0]‐>update(input, output); 

 

 Code in C++, shown in Listing 1.-2., presents body of 
the member function update() in luenberger_observer class 
and examples of definition of pointer to class object and call 
function udpate(). 

An example of definition of pointer to class object 

contains call class constructor. Observer gain dL  is 

constructor argument. Therefore this vector needs to be 
specified and define outside of the class - implementation 
does not provide methods of determination of the gain. 

Kalman filter is extension of discrete state observer 
concept. Problem of determination of the filter gain is 
solved. Therefore kalman_filter class is derived class of 

luenberger_observer. Filter gain K  is optimal in sense of 
minimize the variance of the estimation error. Standard form 
of Kalman filter is current estimator (correction takes place 
at update step, not prediction step). In Fig. 3. block diagram 
of Kalman filter is shown - calculations related to the 
determination of gain have been omitted. Kk is filter gain 
computed at time k. 

 

 
 
Fig.3. Kalman filter as observer 
 

Complete description, including formulas for filter gain 

K  and estimation error covariance matrix P , which is a 
basis for the implementation, was shown in the following 
pseudocode [16], [17]: 

1) computing gain at time k : 

(12)         1
1  1T T

d d d dk k k


   K P C C P C R  . 

2) update and correction at time k : 

(13)         1 1dk k y k k    x x K C x , 

       1dk k k  P I K C P  . 

3) prediction at time k  to 1k  : 

(14)      1 d dk k u k  x A x B , 

   1 T
d d dk k  P A P A Q  . 

 

Code in C++, shown in Listing 3.-4.,  presents body of 
the member function update() in kalman_filter class and 
examples of definition of pointer to class object and call 
function udpate(). 
 
Listing 3. Body of the upadate() function, kalman_filter class 
vector<double> 
kalman_filter::update(double u, double y) 
{ 
  // gain computation 
  K = (P * Cd.tr()) / (Cd * P * Cd.tr() + Rd); 
 
  // update and correction 
  x_act += K*(y ‐ Cd*x_act); 
  P ‐= K*Cd*P; 
 
  // prediction 
  x_next = Ad*x_act + Bd*u; 
  P = Ad*P*Ad.tr() + Qd; 
   
  // current state 
  return x_act; 
} 

 
Listing 4. An examples of definion of pointer to kalman_filter class 
object and call member function update() 
 

// array of state observers
state_observer** observer = new state_observer*[3]; 
 
// class contructor 
observer[1] = new kalman_filter(Ad, Bd, Cd, Qd, Rd, x_init, P_init); 
 
// result vector 
vector<double> x_e(3, 0.0); 
 
// Kalman filter update 
x_e = observer[1]‐>update(input, output); 

 

Kalman_filter class constructor has more arguments 
than its base class - although the solution to the problem of 
determination of gain is built into the algorithm, it is 
necessary to provide information about noises occurring in 
the system. These information are stored in form of system 

noise covariance matrix dQ  and measurement noise 

covariance matrix dR . Both matrices refer to a discrete-

time noise model, with a sampling time equal to algorithm 
iteration time. It is also necessary to determine the initial 

estimation error covariance matrix (0)P . 
 

 
 
Fig.4. Neural-network-based state estimator 

 
Neural estimator is implementation of set of neural 

networks trained off-line. Each network estimates one of 
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unknown state variables. For the assumed system "result of 
estimation" is two elements vector - not, as in previous 
cases - three elements vector. This is equivalent to 
reduced-order state observer. Class implementation is 
based on 2D array of matrix class objects. First array index 
determines network number (state variable), second 
determines network layer number. Every network contains 
equal number of layers, use the same sets of activation 
function (sigmoid for hidden layer, pure linear for output 
layer) and takes identical input vectors. Number of neurons 
in each layers can be different between networks. Fig. 4. 
shows simplified block diagram of neural estimator for two-
mass system. 

The implementation of multilayer, one-way, sigmoidal 
neural network was based on [18]. Code in C++, shown in 
Listing 5.-6., presents body of the member function update() 
in neural_estimator class and examples of definition of 
pointer to class object and call function udpate(). 
 
Listing 5. Body of the upadate() function, neural_estimator class  
vector<double>  
neural_estimator::update(double u, double y) 
{ 
  // data processing 
  vector<double> in = data_processing(u, y); 
   
  // result vector 
  vector<double> out;   
   
  for(unsigned i = 0; i < net_number; i++) 
  { 
    out = in; 
     
    // neural programs 
    for(unsigned j = 0; j < layer_number; j++) 
    { 
      out = W[i][j]*out + b[i][j]; 
      out = activation_fcn(j, out); 
    } 
 
    x_act(i) = out(0); 
  } 
 
  // current state 
  return x_act; 
} 

 
Listing 6. An examples of definion of pointer to neural_estimator 
class object and call member function update() 
 

// array of state observers 
state_observer** observer = new state_observer*[3]; 
 
// class contructor 
observer[2] = new neural_estimator(net_n, layer_n, delay, W, b); 
 
// result vector 
vector<double> x_e(2, 0.0); 
 
// neural estimator update 
x_e = observer[2]‐>update(input, output); 

 

Functions data_processing() and activation_fcn() are 
private member functions. First one forms input vector out 
of current and previous samples of input u  and output y . 

Number of previous samples used by observer is 
determined by class constructor third argument - delay. 
Second function is layer activation function, supporting 
vector class objects. The last two arguments of class 
constructor - W and b shown in an example - are 2D arrays 
of matrix class objects containing respectively network 

weights and biases. Sizes of those arrays are determinate 
by class constructor arguments net_n and layer_n. 
Implementation do not provide training algorithms - weights 
and biases are not modified during estimator iterations. 

With a common base class for all estimation method, 
presented implementation has a significant advantage. For 
each class call update() function is identical. On Fig. 5. 
class inheritance diagram is shown. Diagram was created 
by Doxygen documentation generator. 
 

 
 
Fig.5. Inheritance diagram for state observers algorithms classes 

 
Simulation results 

The electrical drive, shown in Fig. 1., was simulated in 
MATLAB/Simulink environment. Comparative 
implementation of state observers algorithms was done in 
MATLAB script language. In Fig. 6. plots of input signals are 

shown - reference angular velocity 1 ref  and load 

torque lT .  

 
 
Fig.6. Control system input signals: reference angular velocity 
(discrete-time) and load torque (continuous-time)  

 
In Fig.7. plots of the responses of the control system are 

shown - reference motor torque e refT  and actual angular 

velocity on the motor side 1 . Velocity oscillations are 

caused by nature of analyzed system which was described 
in detail in previous work [11], [13]. Those signals are input 

data for estimation algorithms. Sample time s  is equal to 

100 µs. Simulation step size is equal to 1/100 of this value - 
1 µs. 
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Fig. 7. Response of the control system: angular velocity on the 
motor side (discrete-time) and reference motor torque (discrete-
time) 

 
Plots shown in Fig. 8. to 10. are results of simulation of 

electrical drive in MATLAB/Simulink environment compared 
with results of discrete estimation algorithms implemented 
in C++, in VisualDSP++ 5.0 environment. Program was 
executed on digital signal processor ADSP-21369, member 
of the SHARC family. 

For simulation purposes, discrete Luenberger observer 
gain was determined. Dynamics of the estimation error is 
equivalent to a dynamics of the Butterworth filter with time 
constant equal to 10 ms. In Fig. 8 results of simulation and 
estimation of unknown state variables are shown. 

 
 
Fig.8. Estimation results - discrete full-order Luenberger state 
observer 
 

Kalman filter works in system with additive white 
Gaussian noise. For simulation purposes, to measured 

angular velocity 1  was added white noise of standard 

deviation equal to 1 rad/s. In Fig. 9 results of simulation and 

estimation of unknown state variables are shown. The 
choice of matrices 

dQ  and 
dR  was experimental. 

 
 
Fig.9. Estimation results - Kalman filter 

 
 

Fig.10. Estimation results - neural estimator 
 

Both Luenberger observer and Kalman filter 

underestimate angular velocity 2  and overestimate 

torsion sT  during load. This is due to the fact that 

mathematical model of the system do not contain 
information on load torque. This effect is consistent with the 
assumptions of algorithms. Solution to this problem could 
be extension of observer structure shown in [19] or [20]. 
Objective-oriented technique will facilitate such 
modifications.  

Based on [18], for simulation purposes, neural networks 
of neural estimator had following structure: 7 neurons of first 
hidden layer (input layer), 8 neurons of second hidden layer 
and 1 neuron of output layer. Input vector consist of current 
and 3 previous samples of reference motor torque 

e refT  and 

angular velocity 
1 . Networks training was based on 
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simulation data - CHIRP signal as reference motor torque 
and responses of the control system to starting-up, braking 
and reversing. In Fig. 10 results of simulation and 
estimation of unknown state variables are shown. 

 
Conclusions 

The article presents objective-oriented implementation 
of three state observers methods: Luenberger observer, 
Kalman filter and neural estimator. Implementation was 
dedicated to digital signal processor. Results of estimation 
are in all cases consistent with assumptions and are 
identical with result of comparative implementation done in 
MATLAB/Simulink environment. Luenberger observer is 
characterized by desired dynamics of estimation error. 
Kalman filter properly performs estimation of state vector 
under measurement noise. Neural estimator generalize 
training data and estimate state variable properly also 
during load. 

Encapsulation of estimation methods was a success - all 
necessary observers parameters and sub-algorithm are 
classes members. Object-oriented techniques allow to use 
both convenient syntax and hardware implementation of 
operations on floating-point number arrays. 

Further development of systematized object-oriented 
library in C++ for electrical drive is planned. Main goal is to 
enable easy collaboration between DSP and 
MATLAB/Simulink environment, primarily in terms of neural-
network-based estimator. 
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