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Event-based S-transform approach for nonintrusive load 
monitoring 

 
 

Abstract. In this study, a nonintrusive load monitoring system is developed by analyzing the power signal obtained from a single point of power 
meter installation to detect ON/OFF load activities. A mathematically designed model with backpropagation neural network is utilized in load pattern 
recognition to decompose the load operation. Leveraging its unique load signature profile, the S-transform approach is employed to extract the 
features from the aggregate power signal and analyze the detection of load start-up transient from signal processing. To improve the accuracy of 
load identification for unknown data, the power factor is used as an additive feature with 99.32% load recognition accuracy. 
 
Streszczenie. W artykule analizowany jest system monitorowania obciążenia sieci. Wykorzystano sieć neuronową do rozpoznawania rodzaju 
Transformata S jest użyta do ekstrakcji danych z sygnału mocy. Dodatkowo do identyfikacji obciążenia użyto współczynnik mocy. Metoda 
monitorowania obciążenia systemu energetycznego wykorzystująca transformatę S. 
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Introduction 
 The power system has become a complex network with 
the emergence of distributed generation. Smart grids 
provide a new set of technology-based tools by integrating 
both load and generator sections to allow a grid to be fully 
optimized [1]. The smart meter is one of the components in 
a smart grid system; it can be used to monitor the load 
performance by conducting a detailed analysis of the 
energy demand signal from the consumer site.    
 By monitoring the load activity, users are provided with 
valuable information, which facilitates the identification of 
inefficient appliances, inefficient energy usage, and load 
shifting according to the time of day when energy is cheap. 
In the low-voltage level, load is monitored by measuring the 
energy demand, which is caused by individual and 
composite load operations in the building, through the use 
of two methods, namely, intrusive and nonintrusive. 
 In the past, load is monitored by installing the power 
meter in every appliance of interest; this method is called 
intrusive load monitoring. This method can monitor the load 
in real-time and accurately reveals energy usage. However, 
the high cost and implementation of abundant power meters 
could affect system reliability [2]. Hence, a solution known 
as nonintrusive load monitoring (NILM) was introduced to 
simplify the load monitoring system. Hart [3], a pioneer of 
the NILM system, proposed a method to disaggregate the 
load activity from the total measurement at the panel meter 
level based on a steady state detailed analysis. 
Nonintrusive method requires low-cost power meter 
installation and is easy to implement in the consumer 
sector. 
 Previous work indicates that current and voltage signals 
are extracted through steady state [4], transient, or a 
combination of both analyses [5, 6]. Steady state analysis 
considers the change state from one energy level to 
another new energy level with specific thresholds. Transient 
analysis takes advantage of the drastic start-up current of a 
unique load profile, which can be stored as a database to 
implement load detection from the total energy demand. To 
improve load decomposition, a combination of both analysis 
methods is employed to provide more information in the 
form of different signals to identify the load. The authors in 
[7] showed the advantage of the power factor feature 
approach in detecting appliance operation. An advance 
feature extraction transform was manipulated to 
discriminate the load signature by using wavelet transform 
[6] to overcome the limitation of Fourier transform, which 

does not properly locate the time when the event occurred 
[8]. However, wavelet transform does not provide the 
frequency invariant amplitude response [9]. Pattern 
recognition has been explored as a method to classify the 
target appliance in the NILM context. Supervised machine 
learnings, such as artificial neural network (ANN) [10, 11], 
support vector machine (SVM) [8], and fuzzy logic [12], 
were utilized in the past to identify the load. Particle swarm 
optimization (PSO) and genetic algorithm (GA) are 
considered improvements of previous methods [13]. 
 In this study, an event-based method for load 
identification is employed by leveraging S-transform feature 
extraction to provide a different signal of the load profile for 
non-periodic electrical signals based on the time–frequency 
representation of a time series signal [14]. Edge detection is 
analyzed by image processing for transient load switching 
based on the appliance energy level. A backpropagation 
neural network (BP-NN) is selected as the pattern 
recognition tool for NILM modeling because it is commonly 
used in load decomposition. The proposed feature 
extraction is appropriate for steady state analysis as the 
event and disturbance in the signal can be detected with 
respect to time. To prove the robustness of the developed 
model, unknown data are tested to evaluate system 
performance. The power factor is considered an additive 
feature in this work to increase the load identification 
accuracy for unknown data tests.  
 
S-Transform to detect the event in a non-periodic signal 
 S-transform (ST) is a signal processing technique that 
produces a time–frequency representation of a time series 
signal. Compared with wavelet transform (WT), ST 
represents a progressive resolution that retains absolutely 
referenced phase information and has a frequency-invariant 
amplitude response. ST is a revolution of the continuous 
wavelet transform (CWT), which is based on a moving and 
scalable localizing Gaussian window. The ST function, x(t), 
can be derived as a CWT function multiplied by a phase 
correction factor, ݁ିଶగఛ	ሾ15ሿ. To derive ST, CWT needs to 
be considered as a series of correlations of the time series 
with a wavelet-like function in Equation (1).  

(1)  
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where ω (t − ߬,݀ ) is the mother wavelet, t and ߬ both denote 
time, and dilation factor d is the inverse of frequency f. 
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The mother wavelet can be expressed as Equation (2). 
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According to Equation (2), the mother wavelet does not 
fulfill the condition of having a zero mean, and it is not 
strictly a CWT [16]. Therefore, ST is obtained by multiplying 
CWT, ܹሺ߬, ݀ሻ, with a phase factor. By substituting Equation 
(2) into Equation (1), the ST equation is 
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Combining frequency dependent resolution with 
absolutely reference phase allows the time average of ST to 
be equal to the Fourier spectrum. Therefore, ST 
simultaneously estimates the local amplitude spectrum and 
the local phase spectrum. The output of ST is a 2D matrix 
where rows pertain to frequency and the columns represent 
time. Each element in the matrix is a complex number. The 
information in the ST matrix can be plotted as time–
frequency contours, which facilitate the analysis of signal 
changing detection via visual inspection of the energy level.    
 

Proposed NILM method 
 An NILM system was developed in this study by 
leveraging ST feature extraction of the real power of the 
total measurement for edge detection and by creating a 
new dimension of the load signature signal based on time–
frequency to monitor a circuit of fluorescent light with 14 

tubes, an airconditioner, and a computer. The power meter 
is capable of measuring real power (P), reactive power (Q), 
the power factor (PF), apparent power (S), and Irms and 
Vrms parameters. The power factor is considered as an 
additive feature because of its good contribution to load 
decomposition when simulated with unknown data. A block 
diagram of the proposed method is shown in Figure 1. 
 

Data acquisition 
 The power meter was installed at the main entrance of 
the power source. Experiments were conducted under  real 
scenario with 50 Hz supply from the power distribution. The 
sampling rate used for data acquisition was 1 Hz. The 
capability of the meter allows signal processing based on 
start-up transient and steady states of the load signature. 
Supervised learning data acquisition, which carries out load 
switching manually and systematically by covering all 
combinations of possible events, was considered to 
illustrate the energy demand pattern of the monitored 
appliances.  
 

Preprocessing of data 
 In this stage, raw data need to undergo a filtering 
process by employing a median filter to remove the noise in 
the signal. Median filtering is used to produce big edge 
jumps between different transition states, thus smoothing 
and reducing the noise of the raw signal without removing 
important information, such as the transient of the appliance 
that stands for the last few seconds. The raw data collected 
in this experiment are fined tuned by removing the noise in 
the signal with a median filter, which simply selects the 
median value of the sequence to represent the current 
value [5].  
 

Feature extraction 
Feature extraction is a form of signal processing to 

transform a pattern from the actual form into a new form 
without eliminating the event occurring in the signal. The 
collected energy demand could show the possibility of 
appliance activity based on appliance switching. The real 
power data collected from the main incoming power supply 
are used to compute ST to form a map of complex numbers 
in the ST domain. The ST matrix with N columns and M = 
(N/2) + 1 rows is obtained after employing ST according to 
the signal. The feature that represents the event in the real 
power signal is extracted from the ST analysis in terms of 
time–magnitude. The ST of the real power signal can be 
obtained with Equation (4).  
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where ܹݏ, is the S-matrix for real power (W), i is the 
number of columns related to time, and j is the number of 
rows related to frequency. 
 Further ST analysis was performed by computing the 
difference between time–frequency values to obtain a shift 
in the signal by the inverse of the original signal to produce 
a high dimension in the signal. The difference in the time–
frequency equation is provided by Equation (5).  

(5)  )1( ,,,  jijiji WsWsWs , 
 

where ܹݏ, is the current S-matrix value and ܹݏ, െ 1 is 
the previous S-matrix value. 
 The correlation between the standard deviation and 
event occurring in the signal is shown in Figure 2. The 
proposed model seeks to use a combination of power 
parameters as inputs for neural network training in an effort 
to assess the optimum load identification model. Then, the 

 
Fig. 1. Block diagram of the proposed NILM system 
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ST based on time–magnitude is analyzed by selecting 
standard mathematical statistical indices, such as 
maximum, minimum, mean, standard deviation, and 
kurtosis. A detailed analysis is evaluated by testing the 
effectiveness of the extracted feature according to neural 
network modeling. 

  
  

 

 Therefore, standard deviation is considered a pool 
feature in neural network training because of its 
effectiveness in load decomposition. Standard deviation 
analysis can be utilized to characterize the event occurring 
in the signal in terms of time–magnitude representation. ST 
feature analysis can be derived as Equation (6). 
 

(6)  )( , jiST WsstdF  ,
 

where STF  is the vector value of the standard deviation for 

all columns in the delta ST matrix. 
 

Detection of appliance switching operation 
 Based on the signal analysis, a visual inspection based 
on the ST approach was performed to detect the load 
operation event from the switching activity. By plotting the 
ST matrix, the decomposition of load type and activity can 
be detected through the analysis of the energy level. Owing 
to the drastic difference in the power consumptions of the 
fluorescent light, airconditioner, and computer, the complex 
value in the ST matrix needs to be normalized with ݈݃ሺ1 
 .ሻ so that the image will represent a satisfactory eventݔ
Figure 3 shows the edge detection analysis process for load 
switching. The condition for output training neural network 
can be labeled based on appliance operation switching. 

Only two states of appliance operations are considered, 
namely, 0 and 1 referring to the ON and OFF appliance 
operations, respectively.   

  
 
Application of Neural Network for Automatic Load 

Identification      
 Multi-layer perceptron feed-forward with BP-NN is 
selected as the pattern recognition tool because it is  
among the most applied classification algorithms in load 
decomposition. Training was performed with “logsig” as the 
transfer function and “trainlm” as the training function 
because of the fast and good training in neural networks. 
The advantage of  implementing the neural network method 
is that the performance of the network model can be 
increased by adjusting the hidden layer structure to obtain 
the best model. After data preprocessing, the pool feature 
was arranged systematically as the input for the neural 
network training. The structure of a multilayer feed-forward 
network is shown in Figure 4. The input features with 
normalized data are the  active and reactive powers (P, Q), 
power factor (PF) and ST feature (FST) and the 
corresponding three outputs are the  operation states of the 
appliances, namely, fluorescent light, air-conditioner and 
computer. To determine the appropriate hidden layer 
neuron, the BP-NN was programmed with the initial training 
algorithm with the objective of computing the lowest mean  
square error for the best hidden neuron evaluation followed 
by the best model design.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4. Example of the MLP-BPNN structure  

 
Fig. 3. Edge detection based on load switching 

Fig. 2. ST standard deviation plotted with respect to the real 
power event 

stF
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Neural network training 
 The number of samples used for training was 2664 
datasets. The number of possible appliance switching 
combinations in this experiment was 8 combinations (2ଷ	= 
8). The datasets were  divided into three blocks of datasets,  
namely, 60% of training data, 20% of validation data, and  
20% of testing data. The objective of implementing dataset 
division is to avoid over fitting during training and to ensure 
the efficiency of the developed model. The number of 
training data for the ON and OFF states after the division 
process is listed in Table1. The input data are normalized 
so that the value fall between 0.1 and 0.9 to enhance the 
network performance [17]. Normalization was perfomed in 
this study with Equation 7. 
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where ̅ݔ is the normalization variable, ݔ is the variable to be 
normalized, ݔ is the minimum value of the variable, and 
 .௫ is the maximum value of the variableݔ
 

Table 1. Number of training data according to the ON and OFF   
states 

Appliances Number of OFF state 
training data 

Number of ON 
state training data 

Fluorescent 
light 

278 255 

Airconditioner 361 172 
Computer 325 208 

Total 964 635 
 

Neural network for unknown data performance 
 An unknown dataset was utilized in the next simulation 
to test the robustness of the developed model under a real 
scenario of variation in the power system. A total of 2954 
datasets were used to test the BP-NN model. The number 
of testing data representing the on and off states of the 
appliances is listed in Table 2. The input data are 
normalized so that the value fall betweeThe data are  
numbers for the testing data are tabulated in Table 2. 
 

Table 2. Number of unknown data according to the ON and OFF 
states 

Appliances Number of OFF state 
testing data 

Number of ON 
state testing data 

Fluorescent 
light 

302 143 

Airconditioner 293 152 
Computer 339 106 

Total 934 401 

 
Test Results  
 This section describes the results obtained from the 
proposed method to identify the ON and OFF states of 
appliances. Given that the output obtained after the 
simulation is not as expected, output processing needs to 
be performed after the simulation. Therefore, the estimated 
result obtained can be analyzed  by comparing it with the 
output target of the dataset. 
 Table 3 shows the testing results for the BP-NN model 
considering several input features. From the results, it is 
noted that the accuracy of the model and correct 
classification of the appliances can be increased by 
considering the appropriate features in the training of the 
neural network. The performance of the developed BP-NN 
is assessed based on the correct classification and 
misclassification of data, with accuracy recognition as a   
benchmark of the NILM system.  

The number of time slices in which an appliance is 
correctly classified as being ON is referred to as true 
positive (TP), classified as being ON when it is actually OFF 
is referred to as false positive (FP), classified as being OFF 
when it is actually ON is false negative (FN), and correctly 
classified as being OFF is true negative (TN). All obtained 
classification results show high prediction accuracy (above 
90%). 

Effective input features need to be considered to 
decrease misclassification of prediction data, thus 
increasing the accuracy of load operation recognition. In 
this case, the ST feature and power factor are considered 
as effective input features that can give better BP-NN 
prediction accuracy. The results for validating the BP-NN 
with unknown data are tabulated in Table 4. The results 
showed the power factor is considered as an effective input 
feature because it gives the best prediction accuracy with 
the least misclassification. Based on the results shown in 
Tables 3 and 4, misclassification of unknown data is high 
compared to the testing data.  

 
Table 3. Results of the BP-NN model with testing data  

Input 
feature 

Correct 
classification 

Misclassification Accuracy 
recognition 

(%) 
P 522 11 98.06 
P Q 527 6 98.94 
P Q 

STF   
532 

 
1 

 
99.81 

P Q 
STF

PF 

 
532 

 
1 

 
99.81 

 
Table 4. Results of the BP-NN model with unknown data 

Input 
feature 

Correct 
classification 

Misclassification Accuracy 
recognition 

(%) 
P 545 46 92.22 
P Q 549 42 92.95 
P Q 

STF   
565 

 
26 

 
95.54 

P Q 
STF  

PF 

 
587 

 
4 

 
99.32 

 
Conclusion  
 An NILM method was developed to identify the 
operation states of electrical appliances by using a multi-
layer perceptron BP-NN with combined power parameters, 
power factor and ST feature as input features. The pattern 
obtained for each appliance is considered unique as a 
human fingerprint that can be detected from the total energy 
demand. Based on the pool feature patterns, a BP-NN has 
been developed to classify the three types of electrical 
appliances (fluorescent light, air conditioner and personal 
computer) according to their operation ON and OFF states. 
To assess the robustness of the proposed BP-NN, it was 
tested with unknown data. Test results showed that the 
proposed BP-NN model achieved 99.32% classification 
accuracy by using the combined P, Q, ܨௌ்,	and PF features 
when tested with unknown data. The computer showed the 
highest misclassification compared with the fluorescent light 
and air-conditioner. This result is due to the condition that 
the power consumption of the computer is too low 
compared with that of the fluorescent light and the air-
conditioner. In addition, the continuous variation in the 
computer signal made predicting its operation state difficult. 
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