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Abstract. This paper presents general closed-form asymptotic boundary conditions (ABCs) on circular, elliptical and spherical boundaries suitable 
for the finite element modeling of 2D and 3D electrical field problem with open boundaries. To the best knowledge of the authors of this paper, the 
ABCs (in such forms) have not yet been reported in the literature. The 1st and 2nd order ABCs, which can be easily implemented into existing finite 
element codes, are discussed in details, also for an arbitrary shape of the finite element region in 2D and for box-shaped boundaries in 3D. 
 
Streszczenie. Artykuł przedstawia zwarte postaci asymptotycznych warunków brzegowych na kołowych, eliptycznych i sferycznych brzegach. 
Warunki te mogą być wykorzystane do modelowania zagadnień pola elektrycznego 2D i 3D w obszarach nieograniczonych metodą elementów 
skończonych. Według najlepszej wiedzy autorów nie były one przedstawiane w literaturze w takiej postaci. Warunki pierwszego i drugiego rzędu 
mogą być łatwo zaimplementowane do programów metody elementów skończonych i zostały szczegółowo omówione dla dowolnego kształtu 
obszaru 2D oraz prostopadłościennego 3D. (Ogólna, zwarta postać asymptotycznych warunków brzegowych dla zagadnień pola 
elektrycznego analizowanych metodą elementów skończonych). 
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Słowa kluczowe: asymptotyczne warunki brzegowe, metoda elementów skończonych, zagadnienia o otwartych brzegach, pola 
stacjonarne. 
 
 

Introduction 
 Many 2D and 3D electrical field problems can be 
considered as being of the exterior form, that is the problem 
domain is unbounded. Since the finite element method is a 
finite domain method, special techniques must be employed 
when the solution domain is infinite. Over the last three 
decades various methods of analysis for the open boundary 
static and quasi-static electromagnetic field problems have 
been investigated [1]-[10]. The literature on the subject is 
vast and the cited references should only be taken as 
illustrative examples. Unfortunately, very often it is not quite 
obvious how to implement these methods into existing 
classical finite element programs. Among the methods, 
asymptotic boundary conditions (ABCs) seem to be very 
attractive from the numerical point of view. In the present 
paper we discuss different aspects of the ABCs for the finite 
element analysis of 2D and 3D open boundary electrical 
field problems. The closed-form expressions for the Nth 
order ABCs (generalization of formulas presented in [9]) on 
circular, elliptical and spherical boundaries have been 
derived. To the best knowledge of the authors of this paper, 
the expressions, in such forms, have not yet been reported 
in the literature. The 1st and 2nd order ABCs, which can be 
implemented into existing finite element codes, are 
discussed in details, also for an arbitrary shape of the finite 
element region in 2D and for box-shaped boundaries in 3D. 
Implementation of the ABCs into commercial finite element 
software COMSOL Multiphysics is presented. Numerical 
examples are given. 
 
Asymptotic boundary conditions on circular, elliptical 
and spherical boundaries 

To solve elliptic boundary value problems in an infinite 
domain by the finite element method, it is normal to divide 
the unbounded domain by an artificial boundary  into an 
interior region Ri (where sources, heterogeneities, 
anisotropies, etc. may exist) and a residual, uniform region 
Re. When using the finite element method in Ri, some 
boundary conditions must be imposed on the artificial 
boundary . The boundary conditions (called the ABCs) 
should mimic the behavior of the unknown potential V at 
infinity and give reasonably accurate results in the interior 
region Ri. The electric potential V in the exterior region Re 
(and in the outermost part of Ri) satisfies the Laplace 
equation: 

(1) 2 0V  . 

The general solutions to (1), if the potential tends to zero 
at infinity, can be expressed as follows: 
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2D, elliptical coordinates (η,ξ) 
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3D, spherical coordinates (R, , ) 
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where F1n(), F2n() and F3n(, ) are functions of angles 
measured in a standard way in polar (2D), elliptical (2D) 
and spherical (3D) coordinates, respectively. 

The solutions (2), (3) and (4) can be used to obtain 
ABCs on the artificial boundary . The conditions are 
exactly correct when imposed at infinity but only 
approximately correct when imposed at a finite boundary. 
We will show in detail how to obtain the closed form 
expression for the Nth order ABC on a spherical boundary 
. The condition can be constructed as a linear combination 
of the electric potential and its radial derivatives. Taking the 
partial derivative of the electric potential (4) with respect to 
R yields 
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Thus we see that 
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which is recognized as the first-order ABC on a sphere of 
radius d. 

The second derivative of the potential V can be 
expressed as follows: 
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where 1
(2) and 2

(2) are coefficients. 
Now, we want the expression [n(n + 1) + 1

(2) – 2
(2)n] to 

be equal to zero for n = 1 and n = 2. This leads to the 
following system of algebraic equations 
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We obtain the second-order ABC 

(8)
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Similarly, we can obtain the ABCs of the third and 
higher-orders. The Nth order ABC has the form 

(9) 
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where ∂0V/∂R0 = V and the coefficients m
(N) can be found as 

the solution of the following system of N linear equations 
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 n = 1, 2, …, N. 

The result is surprisingly simple 
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Curiously enough, the coefficients m
(N)  arise in many 

different areas of mathematics and physics. They are 
known as coefficients of the Laguerre polynomials �(e.g.: 
N=6  m

(6) = {720, 4320, 5400, 2400, 450, 36}, where m = 
{1, 2, …, 6}). To the best knowledge of the authors of this 
paper, the Nth order ABC (9) with coefficients (11) has not 
yet been reported in the literature in such a form. 

In a similar way one can find the Nth order ABCs on 
circular and elliptical boundaries in 2D. Comparing (2) and 
(4), it is evident that the Nth order ABC on a circle of radius 
d can be obtained from (9) by replacing R with r and 
omitting θ. The Nth order ABC on an ellipse, η = η0, is as 
follows 
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The coefficientsm
(N) are known as the unsigned Stirling 

numbers of the first kind (well-known in combinatorics) and 
can be calculated by the recurrence relation 

 

























 
1

 
1

m

N

m

N
N

m

N
 

for m > 0, with the initial conditions: 
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No doubt, that the closed-form expressions for the Nth 
order ABCs are very interesting from the theoretical point of 
view, however, in fact only the first and second order ABCs 
can be relatively easily implemented into existing finite 
element codes. The boundary contribution in the finite 
element method enters into a line integral representation 
over the outer boundary , where the integrand is a product 
of the weighting function (shape function) and the normal 
derivative of the unknown function V. Hence, the ABCs 
need to be imposed on the normal derivative of V. 

In the case of circular and spherical boundaries the 
radial derivatives are equivalent to the normal ones, but in 
an elliptic system of co-ordinates (η, ) the normal derivative 
is given by 

(13) 
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The Cartesian co-ordinates (x, y) are related to the 
elliptic co-ordinates (η, ) via x = c coshη cos and y = c sinhη 
sin. The semi-major and semi-minor axes of the ellipse η = 
η0 are a = c coshη0 and b = c sinhη0. Therefore, the first order 
ABC on an ellipse η = η0 for the normal derivative is as 
follows 
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If we substitute the second order ABCs into the Laplace 
equation in polar, elliptical and spherical co-ordinates, we 
can eliminate the second order derivatives ∂2V/∂r2, ∂2V/∂η2 
and ∂2V/∂R2, respectively. Therefore, the second order 
ABCs can be expressed in required forms for the normal 
derivatives as 

2D, polar co-ordinates (r, ), r = d 

(15) 














2

2

2
3

1


V

V
dr

V
 

2D, elliptical co-ordinates (η, ), η = η0 
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3D, spherical co-ordinates (R, , ), R = d 
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Asymptotic Boundary Conditions – Implementation 
 An implementation of the ABCs into the FEM program is 
relatively simple when the code of the program is available. 
However, commercial programs are usually closed-source 
software packages. Fortunately, in COMSOL Multiphysics 
software it is enough to choose so called surface charge 
boundary conditions, –n·D = ρs (n – unit normal vector, D – 
electric displacement, ρs – surface charge density), in the 
boundary conditions section. In the section modifications of 
typical boundary conditions are possible in an easy way by 
introducing user’s own formulas. 

The choice of the artificial boundary to be a circle or an 
ellipse in 2D, or a sphere in 3D, enabled simple derivation 
of the ABCs. However, such boundaries are uneconomical 
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for problems with large aspect ratios. The ABCs can be 
relatively easily transferred for an arbitrary shape finite 
element region in 2D and box-shaped boundaries in 3D. It 
is, therefore, necessary to derive the appropriate normal 
derivative expressions for different sides/faces of the 
polygon/box representing the outer boundary. Using the 
relations between the Cartesian and polar/spherical 
coordinates, we have found the relevant ABCs. 

2D, 1st order ABC, u = d, u = r cosψ, v = r sinψ (Fig. 1) 
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3D, 1st order ABC, x = d 
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3D, 2nd order ABC, x = d 
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with the conditions on the other faces obtained by replacing 
x with y and y with x for y = d, and x with z and z with x for 
z = d (in (20) we have used the 1st order ABC to 
approximate the terms ∂2V/∂x∂y and ∂2V/∂x∂z; condition (20) 
differs from that given in [2]). 
 

 
Fig. 1.  Arbitrary shape finite element region and artificial boundary 
Γ in 2D 
 
Numerical Results 

Two examples, for which the exact solutions exist, have 
been analyzed to test the performance of the proposed 
ABCs. 
 
Test Case A (2D) 

The example was chosen in [1] for testing infinite 
elements. It deals with the scalar potential distribution due 
to a dipole consisting of two lines with charge densities ±λ 
on the x-axis at positions x=±a, respectively. The problem 
was solved numerically with a=0.5 and λ=ε0. Due to 
symmetry, the domain of solution was only one-quarter of 

the plane. Solutions of the problem by different techniques 
are compared qualitatively in Fig. 2 (equipotential lines are 
shown in each case). To check if the methods work well, a 
strange form of the finite element region with cut-out was 
chosen for calculation. 
 

 
Fig. 2.  Test problem A: a) finite element mesh, b) analytical 
solution, c) zero Dirichlet boundary condition, d) zero Neumann 
boundary condition, e) infinite elements [1], f) 1st order ABC 
 
Test Case B (3D) 

The test problem B is as follows [3]: 
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The test problem was solved numerically using finite 
elements and ABCs. The problem was also solved on the 
truncated mesh with zero Dirichlet boundary condition, 
V = 0, for comparison. For symmetry only the positive octant 
of three dimensional space was used with the 
homogeneous Neumann boundary condition on the 
symmetry planes. The domain Ri here is a cube d  d  d 
and the planes x = d, y = d and z = d represent the artificial 
boundary . 

We compared exact and numerical solutions in the 
interior region Ri on the basis of the standard global error 
norm 
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where the subscripts “j” and “ej” refer to the computed 
values and the exact values obtained from the analytical 
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solution. The summations were carried out over all nodes. 
The numerical values used were h = 5 mm, d = 1 cm, 
/0 = 1 V/cm. Exemplary results are presented in Table I 
and in Figs. 3-5. It can be seen that Dirichlet boundary 
condition gives very inaccurate results but it is obvious that 
if the artificial boundary is moved far enough out the results 
must be better. In the case of the ABCs the outer boundary 
need not be far away from the source. The first and second 
order ABCs give similar results. The accuracy of the 
solutions is weakly dependent on the discretization. In the 
case of the 2nd order ABC a better mesh gives a more 
accurate solution. 
 
TABLE 1. Global error norm, δ (%) 
Boundary 
Condition 

Predefined mesh size 
Coarse Normal Fine Finer Extra fine 

Dirichlet 68.77 68.032 67.852 68.056 68.12 
1st order ABC, 
(19) 

1.0448 1.0023 1.3598 1.1179 1.1773 

2nd order ABC, 
(20) 

1.6487 1.469 1.3936 1.1874 1.1345 

Number of 
points 

1346 3367 6441 19393 72592 

Number of 
elements 

6184 16872 33388 104773 407992 

 

 
Fig. 3.  Distribution of the local percentage error 
 

 
Fig. 4.  Distribution of the local percentage error 
 
Conclusions 

New, previously unknown (to the best knowledge of the 
authors of this paper), general expressions for the Nth order 
ABCs, for both two- and three-dimensional electric field 
problems with open boundaries have been presented. 
Curiously enough, coefficients of the Nth order ABCs are 

known for as Laguerre and Stirling, and arise in many 
different areas of mathematics and physics. An 
implementation of the ABCs into commercial finite element 
software COMSOL Multiphysics via surface charge 
boundary conditions has been discussed.  
 

 
Fig. 5.  Distribution of the local percentage error 
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