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Characteristic polynomials of positive and minimal-phase
electrical circuits

Abstract. Characteristic polynomials of positive and minimal-phase electrical circuits are addressed. It is shown that the characteristic polynomials
of the electrical circuits are independent of the choice of their reference mesh and of their reference node. Conditions are established under which
the positive electrical circuits have real eigenvalues and are minimal-phase linear systems. Sufficient conditions for cancelation of zeros and poles of
minimal-phase electrical circuits are given.

Streszczenie. W pracy wykazano, ze wielomiany charakterystyczne obwoddw elektrycznych sq niezalezne od wyboru oczka odniesienia w
metodzie oczkowej i wezta odniesienia w metodzie weztowej analizy tych obwoddéw. Podano warunki przy spetnieniu ktérych dodatnie obwody
elektryczne majg rzeczywiste warto$ci wtasne i sg minimalnofazowymi obwodami elektrycznymi. Podano réwniez warunki wystarczajgce skracania
zer i biegunéw w minimalnofazowych obwodach elektrycznych. Rozwazania zostaty zilustrowane przyktadami dodatnich i minimalnofazowych

obwodow elektrycznych. (Wielomiany charakterystyczne dodatnich i minimalnofazowych obwodéw elektrycznych).

Keywords: minimal-phase, positive, electrical circuit, cancelation, pole, zero, independence of characteristic polynomial.
Stowa kluczowe: minimalnofazowos$¢, dodatnio$¢, obwody elektryczne, zera, bieguny, niezalezno$¢ wielomianu charakterystycznego.

Introduction

In positive electrical circuits the state variables and
outputs take only non-negative values for any non-negative
initial conditions and inputs. The positive standard and
fractional order electrical circuits have been investigated in
many papers and books [2, 4, 10, 13, 21, 22, 31, 35]. A new
class of normal electrical circuits has been introduced in
[18]. The minimum energy control of electrical circuits has
been investigated in [17]. Positive linear systems consisting
of n subsystems with different fractional orders have been
addressed in [24, 30]. Decoupling zeros of positive linear
systems have been introduced in [11].

Determination of the state space equations for given
transfer matrices is a classical problem, called the
realization problem, which has been addressed in many
papers and books [1, 3, 14, 34, 36]. An overview of the
positive realization problem is given in [1, 3, 19, 34]. The
realization problem for positive continuous-time and
discrete-time linear system has been considered in [6-9, 16,
20, 23, 27, 29, 33, 34] and for linear systems with delays in
[6, 12, 23, 25, 33, 34]. The realization problem for fractional
linear systems has been analyzed in [26, 28, 32, 34] and for
positive 2D hybrid linear systems in [25]. A new modified
state variable diagram method for determination of positive
realizations with reduced number of delays for given proper
transfer matrices has been proposed in [5]. The minimal-
phase positive electrical circuits have been analyzed in [15].

In this paper the characteristic polynomials of positive
and minimal-phase electrical circuits will be investigated.

The paper is organized as follows. In section 2 some
preliminaries on positivity and asymptotic stability of
continuous-time linear systems are recalled. In section 3 it
is shown that the characteristic polynomial of electrical
circuits is independent of the choice of reference mesh and
of the choice of reference node of the electrical circuits. The
asymptotic stability and eigenvalues of the Metzler matrices
of the positive electrical circuits are also analyzed in section
4. The minimal-phase positive electrical circuits are addres-
sed in section 5. Concluding remarks are given in section 6.

The following notation will be used: R - the set of real

numbers, R™™ - the set of Nxm real matrices, RT™ -
the set of Nnxm real matrices with nonnegative entries,

R™M(s) - the set of Nxm rational matrices in s with real

coefficients, |,-the nxn identity matrix.

Preliminaries
Consider the continuous-time linear system

(1a)
(1b)

where x=x(t)eR", u=ut)eR™, y=yt)eR® are

Xx=Ax+Bu,
y=Cx+Du,

the state, input and output vectors and AeR™",
BeR™™, CeRP", DeRP™.

Definition 1. [19] The system (1) is called (internally)
positive if X =Xx(t)eR" and y=y(t)eRP, te[0,+0] for
all x,=x(0)eR} and u=u(t)eRT, te[0,+o].
Theorem 1. [19] The system (1) is positive if and only if

) AeM,, BeRT™, CeRP", DeRP™,

where M, is the set of nxn Metzler matrices, i.e. the
matrices with nonnegative off-diagonal entries.
The transfer matrix of (1) is given by

(3) T(s)=C[Ins—A]“B+Dzwempxm(s),
d(s)

where N(S) is the polynomial matrix and d(S) is the
polynomial.

For single-input single-output (SISO, m=p=1) linear
system the transfer function can be written in the form

_n(s) _b,s"+b, 8"+ +bs+b,

(4) T()= acs)

s"+a, s" +..+as+a,
Definition 2. The roots s;, S, ,..., S, of the equation

d(s)=s"+a, ;s""' +..+a5s+a,

=(S—5)(S—5;)...(s—5s,)=0
are called the poles of the linear system.

®)

Definition 3. The roots SIO, Sg,..., Sg of the equation
n(s)=b,s" +b, ;8" +...+bs+b,

(6) 0 0 0
=b,(5-5/)(5—55)..(s—5,)=0
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are called the zeros of the linear system.
The poles s, S,,..., S, and the zeros slo, Sg,..., sr? are

called distinct if s;#s; for i=j and s) # s(j) for i#]j,
i, j=1,...,n, respectively.
Definition 4. The linear system is called minimal-phase if

) Res, <0 and Res; <0 for k=1,...,n,

where Re denotes the real part of the complex number.
Definition 5. [19] The positive system (1) is called
asymptotically stable if

(8) lim x(t) =0 for all X, € R} .

t—oo

Theorem 2. [19] The positive system (1) is asymptotically
stable if and only if

9) Re A <0 for k=1,...,n,
where 4, is the eigenvalue of the matrix Ae M,, and

(10)  det[l, A—Al=(A-A)A=A).(A—1,).

Note that the set of poles {s;, S,,..., S, }in general case is
the subset of the set of eigenvalues {4, 4, ,..., 4,}[14].

Independence of characteristic polynomial of the
choice of reference mesh and reference node

First we shall show the independence of the
characteristic polynomial of linear electrical circuits of the
choice of reference mesh and of reference node on the
following simple electrical circuit.
Example 1. Consider the electrical circuit shown in Figure 1

with given resistances R;, R,, R;, inductances L;, L,
and source voltages ¢, €, .

Fig. 1. Electrical circuit of Example 1.

The electrical circuit has three meshes but only two of them
are linearly independent [2, 13]. Using the mesh method we
may write the matrix equation

R+Rs+sly R —(Ri+sby) iy g
an| -R R +Ry+sL, -Ry+sb)  |h|=| &
-(R+shy) —(Ry+sk) R+R+s(Lt+h) || |&+€

where i, i, i; are the mesh currents.

Note that the sum of entries of each row and of each
column of the matrix

R, +R;+5sL, ~R, ~(R, +sL))
12)|  -R, Ry+Ry+sL,  —(R,+sL,)
~(Ri+sL,) —(Ry+sL,) R/ +R,+s(L+L,)

is zero. Choosing as the reference mesh the third mesh we

obtain
-Rs | |8
Ry+Ry+sL, [[i, | |e& |

Similarly, for the choice as the reference mesh of the
second mesh we obtain

R, + Ry +sL, —(R, +5sL)) i) [ e
R +R,+s(L +L,) [ iy | |e+e,

| —(R;+sLy)
and for the choice as the reference mesh of the first mesh

—(Ry +sL,) iy €
R +R,+s(L+L,) | iy | |e+e, |
It is easy to verify that the characteristic polynomial of the

matrices of the equations (13), (14) and (15) is the same,
i.e.

R, +R; +sL,

(13) R,

(14)

R, +R; +sL,

U (R, +5Ly)

p(s):det_Rl +R; +sL, -R, }
| R R, + Ry +sL,
:dCT_Rl +R; +sL, —(R, +sL)) }
| —(Rj+sL) R +Ry +s(L +L,)
(16) :det'R2 +R; +sL, —(R, +sL,) }
| —(Ry+sLy) R +R, +s(L; +L,)

:sleL2 +9[L; (R, +R) + L, (R, + Ry)]
+R (R, +R;)+RyR;.

Therefore, we have the following important conclusion.
Conclusion 1. The characteristic polynomial of the
electrical circuit is independent of the choice of the
reference mesh.

In general case we have the following theorem.

Theorem 3. The characteristic polynomial of any linear
electrical circuit is independent of the choice of the
reference mesh.

Proof. The proof follows immediately from Theorem A.1
given in the Appendix.

Dual results can be obtained for the node method of
analysis of the linear electrical circuits.

Theorem 4. The characteristic polynomial of any linear
electrical circuit is independent of the choice of the
reference node.

Positive electrical circuits
Example 2. Consider the electrical circuit shown in

Figure 2 with given resistances R, , k =1,...,8, inductances

L,, L, and source voltages €, €, .

R,

000
Fig. 2. Positive electrical circuit of Example 2.

Using the mesh method we obtain the equations

80 PRZEGLAD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 92 NR 6/2016



Llﬂ =—Ryi; + Rsiy + Rsig,
dt
(17a) di
(17b) 0= R3i1+R4i2—R33i-3+el,
0 = Rsi; + Ryl —Ry4iy + €5,
where R =R +R;+Rs, Ry, =R, +Rs+ R4,

Ry=R,+R;+R,, Ryy=R;+R,+Rg and iy, k=1,..,4
are the mesh currents.
From (17b) we have

i Rix Rua [ Rax e
(18) [_3} R R {1} s [1}
bl |5 7|k 0o — L=
Riu Ry Ria

Substitution of (18) into (17a) yields

S ARAEH!
dt|i, i e,

where
-R 1R33R44+R32R44+R52R33 RRRi+RsRRss
_ LRsRyy LRsRyy
RRRutRRR:  ~RRRu+RR+RR;
(19b) LRsRis LR R
R R
B= LIF§3 I-IF\)44
R R
LR LRy

Note that the matrix A is a Metzler matrix and the matrix B
has positive entries. Therefore, the electrical circuit is a
positive one with real negative eigenvalues (poles). The
electrical circuit is positive and asymptotically stable and its
matrix A satisfies the condition [13, 19]

(20) —Aler?"".

In general case we have the following theorem [13].
Theorem 5. The electrical circuit composed of resistances,
inductances and source voltages is positive and
asymptotically stable for positive values of the resistances
and inductances if and only if the number of the
inductances is less or equal to the number of linearly
independent meshes and each independent mesh contains
at least one positive resistance. The matrix Ae M, of the
asymptotically stable positive electrical circuit satisfies the
condition (4.4).

Dual results hold for positive asymptotically stable electrical
circuits with given resistances, capacitances and source
voltages [2, 13].

Theorem 6. [19] The Metzler matrix A< M, of positive
electrical circuit is asymptotically stable if and only if all
coefficients of the characteristic polynomial

det[1,A—Al=A"+a, "' +..+ai+a,

(21)
=(A-4)A-14)...A-4,)

are positive, i.e. g >0 for k=0,L...,n—1.

Theorem 7. The Metzler matrix Ae M, of the positive
electrical circuit composed of resistances and inductances
or of resistances and capacitances has non-positive real
eigenvalues. The eigenvalues are real negative if the
electrical circuit has not independent meshes containing at
least one positive resistance or at least one node with
branches containing only capacitors and current sources.
Proof. Proof follows immediately from Theorem 5 and dual
results hold for positive asymptotically stable electrical
circuits composed of resistances, capacitances and source
currents [2, 13].

Remark 1. The Metzler matrix A€ M,, may have a pair of
complex conjugate eigenvalues only if the positive electrical
circuit is composed of resistances, inductances and
capacitances.

Remark 2. [19] The Metzler matrix Ae M, of positive

electrical circuit has at least one real eigenvalue 4, =«
satisfying the condition

(22) ReA <a for k=2,...,n.

Remark 3. The Metzler matrix A€ M,, of positive electrical
circuit

1) for n=1,2 has only real eigenvalues;

2) for n=3 may have a pair of complex conjugate
eigenvalues only if the matrix is not symmetric;

3) for n=4 may have only one pair of complex
conjugate eigenvalues only if the matrix is not
symmetric.

Proof.
1) For n=1 the proof is evident since Ae R™".
For n =2 let the matrix have the form

a, a
A:[ 1 12}_
A Ay

Then
A—a -a
det[lzﬂ—A]z‘ H 12
-8 A-ap
2
=" —(ay tayn)A+a;@y — a5y
and

2
(8 +ay)” —4(ay,8,; —a,ay))
2
=(a —ay)” +4a,,8,, 20
for a, 20, a,;=20.
2) For n=3 by Remark 2 one eigenvalue is always real. If
the matrix AeR>° is symmetric then all eigenvalues are

real. Therefore, the matrix may have one pair of complex
conjugate eigenvalues only if A is not symmetric.

3) For n=4 the matrix Ae M, may have at least one
pair of complex conjugate eigenvalues since by Remark 2,
A has at least one real eigenvalue. The coefficients of the
characteristic polynomial of the matrix A are real. Therefore,
the matrix has two real eigenvalues. o

Example 3. Consider the electrical circuit shown in Figure 3

with given resistances R;, R,, R;, inductances L, L,,
L, and source voltage €.
Using the Kirchhoff's laws we may write the equations
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i

L+l L Jd
L, L+L|dt]i

—R, N 1e'
—(Ry +Ry) | i, 1

(23)

Fig. 3. Electrical circuit of Example 3.

From (23) we obtain

i i
(24) i{l}: A{l}+ Be,
dt|i, iy
where
-1
A= L+l L -(R+Ry) -Ry
Ly L+ —Rs -(R+Ry)
:L -[LR+R)+LR] LR, — LRy
AL LR -LR —[L (R +Ry) + LRy |

s btk L 1L
L L+l 1] AL

(25)

From (25) it follows that the matrix A is a stable Metzler
matrix if and only if

26) LR, >L,R; and LR, > LR;.

Note that if R; =0 then the conditions (26) are satisfied
and the electrical circuit is positive and asymptotically stable
for all positive values of the resistances R;, R, and

inductances L;, L,, L;.

Therefore, the electrical circuit is a positive asymptotically
stable if the conditions (26) are satisfied.

In the general case we have the following conclusion.
Conclusion 2. The electrical circuit consisting of resistors,
inductances and source voltages with at least one node
with branches containing inductances is positive and
asymptotically stable only for some particular values of the
resistances and inductances.

Positive minimal-phase electrical circuits
In this section following [15] the positive minimal-phase
electrical circuits will be analyzed.
R,

i

t )u' “(D IT C, )u:

Ry

Fig. 4. Positive electrical circuit of Example 4.

Example 4. Consider the positive electrical circuit shown in
Figure 4 with given positive resistances R;, R,, R, in-

ductance L, capacitances C;, C, and source voltage €.
Using Kirchhoff’s laws we may write the equations

du
27a e=RC,—L+u,,
( ) 1~1 dt 1
(27b) e=Rri+L 3
dt
(27¢) e=R2C2%+u2,

which can be written in the form

Uy Uy
28a —|u, |=Au, |+Be,
(28a) a2 2
1 1
where
Ly 0 1
R,C RC,
(28b) A= 0 — ! 0 |, B= !
R,C, R,C,
0 o R 1
L L | L

As the output y we choose

U
y=u+Ri=Clu, |, C=[1 0 R].
i

(29)

The transfer function of the electrical circuit has the form
(30)

T(s)=C[l,s—A]'B

S+L 0 0 L
RC RC,
=[1 0 R] 0 S+ 1 0 L
R,C, R.C,
0 0 s+B l
L L[ L |
1
=[1 0 R]
( 1 1 Rj
S+—— | S+—— | S+—
RGA RGA L
5+L s+5j 0 0
R,C, L
X 0 s+L s+Ej 0
RC L
0 0 [s+L s+L
| RG R,C,
_L_
RC,
MO
RC, | d(s)’
1
L L |
where
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e e el el
n(s)=|s+ S+— +| s+ S+ —
R,C, L/RGC RC RC, /L

S N

=| s+ S+— |—+| S+———|— |

R,C, L/RC, RC )L

1 1 R
(32) d(S) = (S + EJ(S +EJ(S +t] .

The poles of the electrical circuit are

(31)

1 1 R
§=———,5,= Sy =——

(33) -——,
RC, R,C, L

and its zeros are

1
s) =— .S
R2C2

2R

0—_
) =

RRC,

(34)

R
If RC, =2R,C, and —2> , then the poles and zeros
2%2
satisfy the conditions s, < SE <y for k=1,.,n—1.

Therefore, the positive electrical circuit is asymptotically
stable and minimal-phase.

T(s)=C[l,s—A'B=[c, 0 ¢

1
=[c

C,][diag(s+a,

0 C3 Cn]
(s+a))(s+a,)...(s+a,)

(36) (s+a)(s+a3)...(s+4a,)

Note that the zero Slo is equal to the pole s, since the

matrix A is diagonal and after the cancelation of the zero
and pole the transfer function has the form

1 R 2R
—+— s+

srae o)

In general case we have the following theorem.

@35 T(= [

Theorem 8. If A=diag[-a;, -a, —-a,]eM, and at

b,J € R" or

in the matrix C = [C1 C, Cn]ein” is zero, then at
least one zero of the electrical circuit is equal to one of its
poles.

Proof. Let ¢, =0, then the transfer function of the electrical
circuit has the form (36).

Therefore, the pole s, =-a, is also the zero of the
electrical circuit. The proof if one entry of the matrix B is
zero is similar. o

Theorem 8 can be easily extended to MIMO positive
asymptotically stable electrical circuits.

by

b,

least one entry in the matrix B = [b1 b,

s+a, s+a,)]"

by

diag[(s+a,)(S+a3)...(S+a,)

by

b,
(s+a)(s+ay)...(s+a, )] :

by

_ (s+ay)[cb(s+a3)...(s+a,)+C3by(s+a))(s+ay)...(s+a,) +C,b,(s+a,)(S+83)...(S+a,_;)]

(s+a)(s+a,)...(s+a,)
_ Cb(S+a3)...(s+a,) +Cby(s+a ) (s+ay)...(s+a,) +...+C.b,(s+a)(s+a3)...(S+a,_;) .

(s+a)(s+a3)...(s+a,)

Example 5. Consider the positive electrical circuit shown in
Figure 5 for n, =3, n, =4 with given positive resistances

R, Ry, Ry, R,, inductances L,, L,, capacitances C,,
C; and source voltages €, €,, €, .
In this case the state equations have the form

u u
d u1 u1 %
(B7a) —| . |=A " |+B|e, |,
dt| i, iy
) ) e,
iy iy

Fig. 5. Positive electrical circuit of Example 5.

PRZEGLAD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 92 NR 6/2016 83



where As the output of the electrical circuit we choose
(37b)  A=diag| - SRR , u
R,C, R;C;, L, L, 1
r . u
1 (38)  y=u;+i,=C| |, C=[0 1 0 1].
RC, I
! 0 i4
B = R3C3
LL LL 0 The transfer matrix of the electrical circuit has the form
2 2
1 5 L
L Ls Ly
T(s)=C[l,s-Al"'B
1 0
RICI
-1 1 O
=[0 1 0 1]diag||s+ ! S+ ! s+& s+& RiCs
RC R:Cs L, L, L L 0
L, L,
1
1 4 L
L Ls Ly
= ! {O (s+ RIC j{s+%][s+ E“j 0
S+ NI P PO i 2 4
RC,
1
R\ rc, © ° 1 1 1
S+ S+ s+—= ||| 373 = + 0 :
R.C, RsC, L)l L L R,Cis+1  L,s+R, L,;s+R,
1L L
(39) 1 1

From (39) it follows that in this case all zeros of the
electrical circuit are equal to the corresponding poles.
Theorem 9. In SISO positive asymptotically stable

electrical circuits the distinct negative zeros S '? k=1,..,n
and the distinct negative poles s, j=1...,n satisfy the

condition

(40) S, <S, <S,,, for k=1,.,n—1.

Proof. The proof follows from Theorem 7 in [8] and its
proof. By this theorem there exists a minimal-phase
realization if and only if the poles and zeros are distinct and
negative and satisfies the condition (40). o

Theorem 9 can be easily extended to MIMO positive
asymptotically stable electrical circuits.

Theorem 10. In MIMO positive asymptotically stable
the distinct si(j)’k ,
i=1..,p, j=L...,m, k= 1,...,n;; and the distinct negative

electrical circuits negative zeros

poles s, k=1,..,n satisfy the conditions s, < sg’k < Sk
for | :1,..., p f J :1,...,m f k = 1,...,nij .
6. Concluding remarks

The characteristic polynomials of positive and minimal-
phase electrical circuits have been addressed. It has been

84

shown that the characteristic polynomials of electrical
circuits are independent of the choice of their reference
mesh and of their reference node. Conditions have been
established under which the positive electrical circuits have
real eigenvalues and are minimal-phase linear systems.
Sufficient conditions have been given for the cancelation of
zeros and poles of minimal-phase electrical circuits
(Theorem 8). It has been shown that the stable electrical
circuits with distinct poles and zeros are minimal-phase
(Theorems 9 and 10). The considerations have been
illustrated by examples of positive and minimal-phase
electrical circuits. The considerations can be extended to
fractional positive electrical circuits.

Appendix
Theorem A.1. If the matrix A=[a;]e R™" satisfies the

conditions
n

A1) D a;=0,i=1..n
j=1

then

(A2)  Ay=A,, forkl=L..nand iy j, €[L...n],
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where A, is the cofactor of the matrix A ( Ay =[Ay] is
the adjoint matrix of A).
Proof. If Ay =0 for k,I =1,...,n then the hypothesis holds.

Assume that A j #0 for some iy, j, €[L,...,n] then from

(A.1) we have

Ay A Qg a, [1] aj, |
(A3) B B Hvjern T G [ 1] | &
a1 i i T Satn |1 &1,
LA A A an 1] | &, |
Applying to (A.3) the Cramer formula we obtain
1
TS
o-Jo
o @ &G &m0 A
(A.4)

N 811 it R, G-t jo &,-1,n
8,411 Gl jo-1 T4, B+ &, +1,n
| 8 @ Ty G @nn |

and A i = A, for k=1L..,n since

DA g == DDA o
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