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Analysis of Dynamic Models of Epidemic 
 
 

Abstract. The paper presents and compared the dynamic models of the epidemic. The spreading of epidemic is described by the set of differential 
equations. Two models presenting different complexity are analyzed and compared. The simplest one recognizes only three classes of individuals 
(susceptible, infected and recovering). The second one takes into account also the dynamic changes of the diseased individuals, inoculations and 
quarantine. The results of numerical experiments concerning both models are presented and discussed. The results of analysis have been used in 
developing the optimization method of identification of the parameter values of the numerical model. 
 
Streszczenie. Praca przedstawia modele rozprzestrzeniania się epidemii przy użyciu układu równań różniczkowych. Dwa rozwiązania o różnej 
złożoności są poddane analizie i porównaniu. Model najprostszy uwzględnia jedynie 3 klasy osobników: zdrowi, ale wrażliwi na zachorowanie, 
zakażeni (chorzy) oraz klasa osobników, którzy są odporni na zakażenie po przebytej chorobie. W modelu bardziej złożonym rozróżnieniu podlegają 
osobnicy zakażeni oraz ci, którzy w wyniku zakażenia zachorowali. Uwzględnia się również kwarantannę oraz szczepienia ochronne. Praca 
przedstawia wyniki symulacji procesu rozprzestrzeniania się ospy w obu modelach. Na podstawie wyników analizy zaproponowano metodę 
optymalizacyjną identyfikacji parametrów modelu umożliwiającą przewidywanie z góry przebiegu epidemii.(Analiza dynamicznych modeli 
rozprzestrzeniania się epidemii). 
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Introduction 

Epidemic is understood as an outbreak of an infectious 
disease affecting a disproportionately large number of 
individuals in a population, community or region within a 
short period of time [1], [2], [7]. The way to examine the 
possible impact of different control scenarios is to use the 
proper mathematical models of spreading the epidemics. 
Such models may be used to answer some very important 
questions regarding many problems, such as what fraction 
of the population should be quarantined or vaccinated, how 
fast the control measures should be implemented, what is 
the predicted time of the maximum number of infected 
individuals and many others [1], [3]. 

The mathematical models should take into account the 
dynamics of the process; hence the differential or difference 
equations are applied in mathematical description [8]. The 
complexity of such models may vary a lot. The simplest 
models cannot capture the complexity of epidemics and 
their dynamics. On the other side the complex models are 
intransparent, more difficult in interpretation and difficult in 
identification of their parameters. 

The first epidemic research limited to studying the num-
ber and causes of deaths were investigated in seventeen 
century. The earliest works of mathematical models des-
cribing the process of disease spreading were initiated in 
eighteen century by Daniel Bernoulli. He created a mathe-
matical model to defend the practice of inoculating against 
smallpox. He tried to convince the population of the country 
that universal inoculation would increase the life expectan-
cy. Nowadays, modeling of epidemic spreading is an 
important direction of research in epidemiology [4], [6], [8].  

 
Fundamental notions of epidemic process 

The real nature of the epidemics is purely stochastic 
with infection treated as an element of chance. However, in 
its simulation the deterministic dynamic models are mainly 
used. In these models the individuals forming the population 
are assigned to different subgroups, each representing a 
specific stage of the epidemic [2]. The typical classes of 
individuals used in modeling include: 
 susceptibles, the individuals who are susceptible to 

infection,  
 infectious, who are capable of spreading the disease,  

 recovering, who are treated as immune to infection in 
further period of analysis. 

All susceptibles are equal at risk of infection and all births 
are automatically counted as susceptible. The flow of 
individuals exist between the susceptible and infectious and 
between infectious and immune. 

It is generally assumed that susceptible individuals 
contract the disease only by getting in contact with the 
infected. Also, the cured individuals are usually immune to 
infection. The time constants of the disease spreading 
depends on the nature of epidemic. 

The transition rates from one class to another are 
mathematically expressed as derivatives, hence the model 
is fully described by the set of differential equations. In 
building such model we assume that the population size is 
differentiable with respect to time and that the epidemic 
process is deterministic [4], [8]. 

 
Simple dynamic model  

In the simplest dynamic model we assume the existence 
of only three classes of individuals: susceptible, infectious 
and recovering. In further considerations we assume the 
following assumptions. 

The starting population formed ny healthy, but 
susceptible might be increased by immigration. The 
assumed immigrant population is equal m, from which αm 
represents the healthy part and the remaining part (1-α)m 
represents infected. 

The disease is spread through the contact of the 
susceptible individual and the infective with the 
transmission rate c. The individuals who contracted the 
disease and recovered are immune to infection in further 
stages of process. 

Let us denote by x1 the number of susceptible, x2 the 
number of infected and x3 the number of immune 
individuals. Additionally, we assume that the immigration 
rate α of healthy individuals is known. The infection rate c is 
related to the average time constant of the disease and is 
also known. The recovery rate ν is related to the average 
time constant of recovery. All of them will be calculated per 
week. The population m of the immigrants to the considered 
region of the country will be also referred to the week. 
Taking into account the given above assumptions we can 
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write the following system of differential equations 
describing the process of epidemic spreading 
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In this model we have assumed the simplest nonlinear 
interactions between infected and susceptible in the form of 
product x1x2. The typical values of the coefficients related to 
smallpox taken into account in our experiments were: α=0.9, 
ν=0.15, transmission parameter c=2.25E-8. The Simulink [5] 
implementation model of these equations is presented in 
Figure 1. 

 
Fig. 1. Simulink model of the epidemic described by equation (1) 

Figure 2 illustrates the numerical results of simulation at 
three different initial conditions of infected: x2(0)=100, 
x2(0)=1000, x2(0)=10000 and m=2500 individuals per week at 
the initial population of susceptible equal x1(0)=10000000.  

 
Fig. 2 The change of the population of susceptible, infected and 
recovered as a function of time 

Figure 3 shows the dynamics of the epidemic spreading 
on the x1-x2 plane. We can observe the point corresponding 
to the highest population of infected (the peak point in 
epidemic). The maximum number of infected individuals is 

dependent on their initial values (the higher initial value the 
larger number of infected). On the other side the peak of 
infected appears practically at the same number of 
susceptible individuals. 

 
Fig. 3. The illustration of the epidemic spreading on the x-y plane at 
various initial conditions of infected 

 
Complex dynamic model  

In the epidemic processes we can observe more 
complex mechanisms. Disease may not appear at a time 
the host is infected. Hence the incubation period should be 
also included in the model. The host infected with pathogen 
is infectious after a period of latency. The infected host may 
experience immune period, but is  still a carrier and capable 
of transmitting disease to others. The infectious period is a 
duration of time within which the host is able to transmit the 
disease to other individuals. Some infected may be also 
isolated from the population (quarantine). If vaccine exists, 
the individuals receiving the vaccine pass automatically 
from susceptible to recovered individuals.  

In more complex model of epidemics we have made the 
following assumptions. 
 Initial population consists entirely of susceptible 

individuals, who may contract the disease through 
contact with sick as in the simplest epidemic model. 

 The infection may be introduced by immigration from 
outside, a fraction of which is sick. 

 Outbreak of epidemic disease is recognized after a 
specific period of time immediately followed by a 
cassation of immigration.  

 After recognizing existence of epidemic, part of  the 
susceptible individuals is inoculated with a vaccine 
making them immune to this particular disease. 

 Starting at the time inoculation begins, a portion of sick 
or become sick later are separated from the general 
population by quarantine.  

 Sick individuals either recover and become immune to 
the disease, or die. 

As a result of these assumptions the following classes of 
individuals have been introduced: 

x1=x1(t) – population of susceptible individuals at time t 
x2=x2(t) – population of infected individuals at time t 
x3=x3(t) – population of immune individuals at time t 
x4=x4(t) – population of diseased individuals at time t 
x5=x5(t) – number of sick individuals quarantined from 

  the whole population at time t 
s=s(t) – the total number of infected individuals 
m – rate of immigration at time t 
n –  rate of inoculations of susceptibles at time t 
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Figure 4 illustrates the general transition diagram among 
the introduced classes of individuals: immigrants, 
susceptibles, infected, immune, quarantined and diseased. 

 

 

Fig. 4. The transition diagram representing flow of signals among 
five classes of individuals 

The above assumptions have resulted in the following 
system of differential equation of the model [4], [7]. 
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The coefficient a23 represents the ratio of the population 
of infected people becoming immune, a24 – the ratio of 
infected who are sick, a25 the quarantine ratio among 
infected, a53 the immune ratio among quarantined, a54 the 
ratio of sick people among the quarantined. 

The Simulink diagram implementing the above system 
of differential equations is presented in Figure 5. In the 
numerical experiments we have assumed the typical data 
corresponding to the smallpox [4]. 

The values of model parameters were as follows [8]: 
a23=0.1 per week, a24=0.003 per week, a25=0.05 per week, 
a53=0.1 per week, a54=0.003 per week, α=0.9, c=2.25E-8 per 
people/week. The following initial values of the investigated 
variables have been assumed in the simulations: 
x1(0)=10000000, x2(0)=100, 1000 and 10000, x3(0)=0, 
x4(0)=0, x5(0)=0.  

The population of the immigration per week, taken in 
experiments was equal 2500 people. We have considered 
the influence of the inoculation on the process of epidemic 
spreading. Few cases are investigated: no inoculation 
n(0)=0 and n(0)= 5000, 10000 and 15000 inoculations per 
week, starting after a period of t0 (in experiment this period 
was equal 8 weeks).  

Figure 6 presents the time changes of 6 mentioned 
classes of populations at three initial conditions of x2(0) 
when no inoculations have been introduced. We can see, 
that the initial number of infected plays an important role in 
spreading the epidemic. The larger is this number the 
quicker progress of the epidemic spreading. However, the 
interesting point is that in all cases of initial conditions the 
epidemic ends at similar number of susceptible, who were 
not infected. 

 

Fig. 5. The Simulink diagram implementing the complex model of 
epidemic described by eq. (2) 

 

Fig. 6. The process of spreading the epidemic at different initial 
population of infected and no inoculations 

 
In the next step the influence of the inoculations has 

been investigated and the corresponding curves presenting 
the process of spreading the epidemic as a function of 
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inoculations are studied. Figure 7 depicts the results 
corresponding to different rates of inoculations per week: 
n(0)=0, 1000, 10000 and 15000 and for constant initial 
population of infected equal 1000. They show the reduced 
number of infected and sick individuals after inoculation. 
The higher is the number of inoculated the higher its 
influence on the epidemic process. The peak number of 
sick people has been reduced more than twice after 
introducing the limited inoculations (15000 per week) in the 
population of 10000000. 

  

Fig. 7. The process of spreading the epidemic at different initial 
number of infected and different number of inoculations per week 
n(0)=0, 5000, 10000 and 15000 
 

Identification of model parameters  
The results of analysis of the epidemic process enable 

making the identification of the parameters of its 
mathematical model. This task has been solved by applying 
the optimization method, minimizing the discrepancy 
betwen the results of the model and the real process. The 
optimization problem might have many local solutions due 
to the nonlinearity of the model (multimodal optimization 
problem). The genetic algorithm, which is able to find global 
minimum, was used in the solution of this task. In further 
experiments both epidemic models were considered. The 
objective function subject to the minimization was defined in 
the first model on the basis of x1 (susceptible), x2 (infected) 
and x3 (immune) individuals in the following way 

(3)        
3
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c v n i

x n d nE
  

   

The index n denotes the number of measured time points 
(n=1, 2, ..., p) of the curve. The respective destination 

values of the real process were denoted by di(n). In the 
experiements we have generated them using the known 
model of epidemy of the following parameter values: α=0.9, 
c=2.25e-08, v=0.15 and different initial conditions of the 
process. 

The genetic algorithm was applied with the following 
parameters: population 30, no of generations 50, crossover 
coefficient 0.85, mutation coefficient 0.02, roulette wheel 
used in selecting the parents for future generations. The 
optimized parameters are composed of two variables: α, v 
and c. On the basis of practical experience it is possible to 
set the feasible parameter ranges for both optimized 
variables. The specified parameter values have fallen within 
their respective bounds as shown below 
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The typical run of the genetic algorithm is well 
characterized by the change of the objective function in the 
succeeding generations as presented in Figure 8. The best 
objective functions corresponding to individual and the 
mean value of all chromosomes are demonstrated. 

 

Fig. 8. The change of the objective function as a function of 
generations (the best individual and mean objective function 
of the population) 
 

As a result of application of the genetic algorithm we 
have got the following estimated values of the optimized 
parameters of the model: α=0.892, c=2.192e-08 and 
v=0.148. They are in good agreement with the real values. 

Figure 9 presents the results of the genetic optimization 
procedure in reconstruction of the time curves. The actual 
curves x1(t), x2(t) and x3(t) representing the model are very 
close to their destinations. The errors (the difference 
between the estimated and destination values of all  curves) 
are presented in the bottom of the appropriate figures. In 
the most time regions their values are very small with 
respect to their destinations (below 2%). The average 
percentage error calculated for all curves and points of time 
related to their appropriate destinations was also very small 
(below 1%). 

The next experiments have been done for the complex 
model described by system of equations (2). The optimized 
parameters are now: a23, a24, a25, a53, a54, α and c. The 
genetic algorithm was applied once again and the objective 
function under minimization was defined in the same way 
as in the previous experiment, however, this time all five 
variables x1 (susceptible), x2 (infected), x3 (immune), x4  
(diseased) and x5 (sick quarantined) individuals have been 
taken into account. 
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The destination values for all variables have been 
generated by using the mathematical model presented in 
the previous chapter with known parameters of the epidemy 
(the same as these used in analysis). The following lower 
(L) and upper (U) limits for the optimized parameters α, v, c, 
a23, a24, a25, a53 and a54 have been assumed: 

L=[0.5  0.05  1e-8  0.01  0.0001  0.01  0.01  0.0001] 
U=[1  0.2  5e-8  0.5  0.05  0.5  0.5  0.2] 

As a result of application of the genetic algorithm we 
have obtained the following estimated values of the 
parameters of the process model: α=0.994, v=0.170, 
c=2.389e-08, a23=0.109, a24=0.0034, a25=0.055, a53=0.101, 
a54=0.0028. They are well compatible with their real values 
used in generating the destinations, providing good fit to the 
appropriate destinations. 

 

Fig. 9. The real (red color) and the estimations of x1, x2 and 
x3 (represented by blue color) made by the model in the 
epidemic process and their appropriate errors of estimation 
(the changes within time of analyzed epidemic process) 

The curves representing the obtained changes of all 
optimized variables (from x1 to x5) are in good agreement 
with the corresponding destinations. Table 1 presents the 
mean percentage discrepancy between corresponding 
estimated and destination curves within the analyzed time 
span, used in an optimization process. It was defined on the 
basis of norms as following 

(5)  100%i i
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for i=1, 2, 3, 4 and 5, where xi and di represent estimated 
and destination values, respectively, of i-th variable 
gathered in the form of vectors. 

Table 1. The mean percentage discrepancy between the 
corresponding estimated and destination curves for all 
types of individuals 

1 2 3 4  
5  

mean
0.82% 0.88% 1.30% 1.28% 4.14% 3.27% 

The total mean percentage error εmean (the average of the 
mean errors between the estimated and destination values 
for all types of individuals) assumes also small value (below 
4%). 

Conclusions 
The paper has presented the study concerning modeling 

of epidemic. Two differential models of epidemic spreading 
have been analyzed: the simplest one recognizing only 
three classes of individuals (susceptible, infected and 
recovering) and more complex one, taking into account also 
the diseased individuals and quarantined. The results of 
numerical simulation of both models have been presented 
and compared.  

The obtained results create the basic step for the 
inverse problem, in which on the basis of the observed 
dynamics of the epidemic the identification of the 
parameters used in the model is done. This task was solved 
by the genetic algorithm. The results obtained for the simple 
and complex models are very encouraging and prove their 
usefulness in identification of parameters of the epidemic 
models. They might be used in predicting the details of 
epidemic process in the future. 
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