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Abstract. This paper considers the problem of assessment of stability margin of linear periodically-time-variable circuits, in particular parametric 
amplifiers, which was investigated using the frequency symbolic method. The assessment of circuit stability is carried out by the real parts of the 
denominator roots of a normal parametric transfer function, which is defined by the frequency symbolic method in the form of the approximation of 
Fourier polynomials. The calculation is performed in an MATLAB environment. 
 
Streszczenie. Praca przedstawia problem oceny marginesu stabilności obwodów liniowych, zmiennych w czasie. Rozważania dotyczą w 
szczególności wzmacniacza parametrycznego, analizowanego przy użyciu metody symbolicznej w dziedzinie częstotliwości. Stabilność jest 
określana na podstawie części rzeczywistej biegunów transmitancji obwodu parametrycznego, zdefiniowanej przy użyciu aproksymacji 
wielomianami Fouriera. Obliczenia numeryczne zostały wykonane przy zastosowaniu programu Matlab. (Ocena stabilności pracy wzmacniacza 
parametrycznego przy użyciu metody symbolicznej w dziedzinie częstotliwości). 
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Słowa kluczowe: metoda symboliczna analizy, obwody o parametrach okresowo-zmiennych, stabilność asymptotyczna, wzmacniacz 
parametryczny. 
 
 
Introduction 

The problem of assessment of stability is an urgent 
problem for linear periodically-time-variable (LPTV) circuits. 
Nowadays, there are methods for assessing the stability of 
these circuits, which are based on the construction of 
Lyapunov functions. The absence of a clear method for the 
selection of Lyapunov functions that was used on 
cumbersome calculations and on the inaccuracy of the 
results [1, 2]. 

The paper considers issues of assessment of asymptotic 
stability and stability margin of LPTV circuits, when you 
change the parameters of its elements by the frequency 
symbolic method (FS-method) [3,4] and by the system 
functions MAOPCs (Multivariate Analysis and Optimization 
of the Parametric Circuits), which is developed on its basis 
[5]. 

In the FS-method, the approximation ( , )W s 


 of a normal 

transfer function ( , )W s   as well as its dual transfer function 

( , )W s t , the LPTV circuit is defined as a Fourier polynomial 
[3,4]: 
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where )(0 sW , ( )iW s , ( )iW s - are time-independent 

rational fractional functions of a complex variable s;    is the 

moment of applying a delta function to the circuit input; k is 
the number of harmonic components in the 
polynomial; 2 / T   , T is the period of parameter change 
of a parametric element of the circuit under the influence of 
the periodic pumping signal. The number of harmonic 
components k determines the accuracy of approximation of 
the transfer function and should be selected with a sufficient 
value. Complex variable S and the required circuit 
parameters are given in symbolic form and are determined 
numerically at the last stages of the calculations. 

Assessment of asymptotic stability in the system 
functions MAOPCs is performed by calculating the real 
parts of roots of a denominator ∆(s) of normal transfer 

function ( , )W s 


. If the real parts of all such roots are 
negative, then the circuit is asymptotically stable, otherwise 
it is unstable [3]. If the circuit is stable, then the value of the 

negative real part of the root, which is the closest to the axis 
jω of the complex plane, characterizes such an important 
parameter of circuit as stability margin. The farther to the left 
from the axis jω this root is located, the greater stability 
margin is. Chapters 2 and 3 of the paper shows the 
application of FS- method for assessment of stability margin 
of single-circuit and double-circuit parametric amplifiers. 
 
Аssessment of stability margin of single-circuit 
parametric amplifier 

The paper is representing a single-circuit parametric 
amplifier (Fig. 1) with two periodic time-variable elements c(t) 
and L(t). The analysis of the single-circuit parametric 
amplifier is fulfilled by the system functions MAOPCs [5]; as 
a result, we have obtained the denominators ∆(s) for 
required polynomials k (1 and 6) of harmonic components 
and for parameters s, mc, mL given in symbolic form. Further, 
these polynomials can be repeatedly calculated for different 
values of these symbols. 

Let's pay attention to the following problems. 

 
Fig. 1. Single-circuit parametric amplifier with two parametric 
elements, where t is time; ( ) cos( )m сi t I t      ; 

0( ) (1 cos( ))с сc t c m t        ; 12
0 10 10с F  ; 

0( ) (1 cos( ))L LL t L m t        ; 1 0.25Y S ; 6
0 0.2533 10L H  ; 

84 10 /rad s    ; 2 0.0004Y S  
 

A. The dependence of the number of roots in the 
denominator ∆(s) on the number of harmonic 
components in approximation of the transfer functions 

According to the FS-method, the coefficients of the 
approximation expressions (1) are determined from system 
of linear algebraic equations (SLAE) in which they are 
unknown. In this interrelation, in the presence of the 
symbolical variable s each unknown is calculated in the 
form of a rational fractional function of s; the degree of the 
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denominator is equal to n(2k+1), where n is the degree of 
differential equation, which is describing the circuit. Since 
the denominator ∆(s) is the same for all the approximating 
coefficients, it will be definitely the denominator of a normal 
transfer function (1), the roots of which are carrying the 
information about the stability of the circuit [3]. Thus, the 
polynomial ∆(s) has the degree r, which corresponds to the 
number k of the harmonic components through such a 
dependence: r=n(2k+1). The number of roots of the 
polynomial ∆(s) is also equal to r. Fig. 2 shows the roots of 
the polynomial ∆(s) for the circuit, which are shown in Fig. 1 
when k=1 and k=6 (conjugate roots are not shown in the 
figure). Thus, for each value of k we have the set A of the 
roots, which correspond to (k-1) harmonic components and, 
additionally, the set B of "new" roots. Since k-th harmonic 
component refines the value of ∆(s), the roots that belong to 
the set A should be considered as accurate. Obviously, the 
roots of the denominator ∆(s), that are obtained at k=1 in the 
calculations for k=6 will be most accurate. The roots of the 
set B are the most inaccurate, but they may be refined 
taking into account the ∆(s) for (k+2)-th, (k+3)-th, etc. 
harmonic components. Therefore, the roots of ∆(s) that are 
obtained at the maximum value of k (in our case, k=6) and 
are concurrently present in the set of roots of the polynomial 
∆(s), should be selected for further consideration. In Fig.2, 

 
Fig. 2. The roots of the polynomial ∆(s) of the amplifier, when 

mL=0.1, mc=0.15, ( ) 0c L    

For k=1 and k=6, these roots are denoted by numbers «1» 
and «2», respectively. Thus, we have obtained two different 
real parts -1.378935e + 7 and -2.666838e + 7, corresponding 
to roots 1 and 2, of which the stability margin determines the 
value -1.378935e + 7, because it is closer to the axis jω. 

 
B. Construction of stability maps 
In [1] two different operating modes of the amplifier were 

qualitatively defined: ( ) 0c L     and ( ) 180o
c L    . 

The operating mode at ( ) 0c L     is named synchronous; 

and it was shown, that in this mode the energy  

F
Fig. 3. The stability areas of the single-circuit parametric amplifier 
at k=6 and different values of phases ( )c L    

delivered to the contour owing to change c(t), is 
compensated by the energy delivered to the contour owing 

to change L(t). The working stability of such amplifier is the 

biggest one. The operating mode at ( ) 180o
c L     is 

named as asynchronous; and it was shown that in this mode 
the energy delivered to the contour owing to change c(t) and 
the energy delivered to the contour owing to change L(t), so 
the working stability of the amplifier is the smallest one. The 
results of simulation of the specified modes by the system 
MAOPCs are shown in Fig. 3. Here are presented nine 

values ( ) 0 ,30 ,32 ,36 ,45 ,60 ,90 ,120 ,180o o o o o o o o o
c L    . For 

each value has been calculated the map of stability of the 
amplifier in the coordinates mc and mL when  

 
Fig. 4. The stability areas of the amplifier shown in Fig.1 for 

6; 0c Lk       and for different Y2 values 

they are changing their values from 0 to 0.7. The stability 
areas are marked by different shades of gray. The instability 
area is left without shade. For example, for ( ) 0c L     the 

stability area is the biggest (shown in fig. 3 by the shade ) 
and it occupies the largest area on the map. For 
( ) 30c L      the stability area is reduced (in Fig. 3 it is 

shown by the shade ) and it becomes more lucid in the 
center of the map. For ( ) 32c L      this area becomes 

even more lucid, while for ( ) 36c L     , it is broken into 

two parts which shrink for ( ) 45 ,60 ,90 ,120c L        . For 

( ) 180c L      the stability area is located only in the left 

lower corner of the map. This fact demonstrates that in such 
case the amplifier has the largest instability area. 

 
Fig. 5. The stability areas of the amplifier shown in Fig.1 for 

6, 180c Lk       and for different 2Y  values 

These results are fully consistent with the conclusions 
obtained in [1] for synchronous and asynchronous operating 
modes of the amplifier, and, in addition, show the set of the 
maps for the intermediate values. 

In Fig. 4 and Fig.5  are shown the areas of 
stability/instability, at a fixed phase difference ( ) 0c L      

and ( ) 180c L     , respectively, while changing 
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0 0 7сm : . , 0 0 7Lm : .  and the conductivity Y2 increases 

from the value 0.0004 S (that is shown in Fig. 1) to the value 
Y2=0.004 S. 

In Fig. 4 and Fig.5 the stability areas increase with the 
growth of Y2. This fact is understandable, because the 
growth of conductivity means a reduction of quality factor (Q 
factor) of the amplifier circuit. 

C. Assessment of the stability margin 
Assessment of the stability margin by the system  

 

Fig. 6. Root №2 of polynomial ∆(s) of the amplifier at k=6, 
0 Lc  , mL=0 and different mc values 

functions MAOPCs can be performed by changing arbitrary 
parameters of the circuit that affect its stability. For 
example, we have built such assessment for mL=0.1, when 
changing mc within the range 0-0.27. 

Fig. 7. The map of the stability margin of the single-circuit 
parametric amplifier at k=6,  0Lc   and mc values varying in 

the range 0-0.27 

It can be noted that while mc increases from 0 to 0.09, 
the root №2 (that determines the stability margin) shifts to 
the left, increasing this margin. Further, when mc increases 
from 0.09 to 0.21, this root shifts to the right, reducing stability 
margin, and when mc=0.27 the circuit is already unstable. 
The transition from the stable condition to the unstable one 
occurs, when mc=0.25, which is fully consistent with the 
results of the verification, using the Micro-Cap software. The 
dependence of the stability margin on mc is shown in Fig. 7, 
and its physical meaning can be understood from the map 
shown in Fig. 3: for  0Lc   and mL=0.1 we observe 

that, in the course of varying from mc=0 to mc=0.27 (along the 
vertical axe), we are moving away from the instability area to 
the bottom part of the map, then we are approaching the 
instability area at the top part of the map and finally we are 
entering it. 

 

Assessment of stability margin of double-circuit 
parametric amplifier 
Double-circuit parametric amplifier with parametric time-
varying capacity c(t) is shown in Fig. 8. 

Fig. 8. Double-circuit parametric amplifier  
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In Fig.9 is shown the location of the roots of the 
polynomial ∆(s), taking account in the normal transfer 
function of the  

 

Fig. 9. The roots of polynomial ∆(s) of the amplifier circuit from 
Fig.4, when the number of harmonic components is in the normal 
transfer function k=2 and m=0.2 

Circuit of the two harmonic components k=2, that 
provides, in this case, the requirements of accuracy. The 
degree of the polynomial ∆(s), considering the 4th order of 
differential equation (n=4), that describes the circuit, will be 
r=n(2k+1)=20 [4]. There are not shown the conjugate roots 
in Fig. 9. Since the real parts of all roots from figure 9 is 
negative, then the circuit is stable for selected values of the 
parameters. In figure 10 is shown the trajectory of the roots 
of the polynomial ∆(s) from figure 9, by changing the 
modulation depth m of parametric capacity c(t) within limits 
m=0.2:0.01:0.25. Roots 2,4,6,8, that are having the same real 
part and moving in the axis to the side jω (marked by white 
squares) and they are between values m=0.2292 and 
m=0.2293, simultaneously are crossing it. It is fully 
consistent with the results, that obtained by using the 
program Micro-Cap. 

  
 
Fig. 10. The roots of polynomial ∆(s) amplifier circuit from Fig.8 
when changing m=0.2:0.01:0.25. Roots for m=0.2 are marked by 
black color 

 



111                                                                            PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 92 NR 7/2016 

 
а) 

  
b) trajectories of the roots in a larger scale 

Fig. 11. The roots of polynomial ∆(s) amplifier circuit from Fig. 8 at 

m=0.25 and changing 444
1 1025.1:1005.0:101  Y . Roots 

for 4
1 101 Y  are marked by black color 

Thus, the circuit at m=0.2292 is still stable, while m=0.2293 - 
is not stable. 

In Fig. 11 is shown the movement of the roots in the 
reverse direction. For this initial value of the roots we fixed 
for m=0.25 (the endpoint of the trajectories of the roots from 
figure 10) and began to increase Y1. In this case, the quality 
factor of the signal contour is reduced, and between values 

4
1 1015.1 Y  and 4

1 102.1 Y  the amplifier becomes 

stable again. 
In Fig. 12 is shown the stability map of double-circuit 

amplifier for m=0.25 and by changing conductivity Y1 and Y2 
(quality factor) of the signal and idler contours, respectively. 

By the symbols and  are marked stable and unstable 
conditions of circuit, respectively. In Fig. 12, by rectangle is 
selected an area, that corresponds to the (upward) value of 
the roots 2,4,6,8 from Fig.11. 

The results are fully consistent with the obtained 
conclusions, using the program Micro-Cap. 
 
Conclusions 

1. The FS-method and based on this method system 
functions MAOPCs are a perspective tool for assessment of 
asymptotic stability and stability margin of linear periodically 
time-variable circuits, in particular parametric amplifiers. 

2. The necessary refinement of roots and, therefore, 
the refinement of stability margin can be done by increasing 
in the number of harmonic components in a normal transfer 
function. 

3. For the first time, stability maps for single-circuit and 
double-circuit parametric amplifiers have been obtained by 
software application. 

4. Full coincidence of results between programs 
MAOPCs and Micro-Cap proves the adequacy of the 
transfer functions, generated by the FS-method, and high 
accuracy of assessment of stability through the roots of a 
polynomial ∆(s). 

5. FS- method allows  effectively assess the stability 
and generate the trajectories of roots or of stability maps for 
changing arbitrary parameters of circuit, that is comfortable 
in control of stability in statistical character problems and  
optimization of parametric devices. 
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Fig. 12. Stability map of amplifier from fig. 8 at 0.25m   and 

changing 555
1 1015:105.0:108  Y  

555
2 1015:105.0:108  Y 51015:  Is marked by the black 

rectangle selected fragment that corresponds to a trajectories of 
the movement of roots from fig.11b 

 


