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Thermal conductivity of silicon: theoretical first principles study 
 
 

Abstract. New version of the first principles molecular dynamics calculations of thermal conductivity of materials has been proposed and applied to 
the silicon crystals. The method proposed is based on the kinetic theory of phonon thermal conductivity and permits to calculate several material 
properties (specific heat, elastic constant, acoustic velocity, mean phonon relaxation time and coefficient of thermal conductivity) at certain 
temperature. The method has been applied to the silicon crystal and the results obtained have been found to be in satisfactory agreement with 
corresponding experimental data. The method proposed is promissing for the ab initio calculations of thermal conductivity of pure and doped 
semiconductors. 
 
Streszczenie. Zaproponowano nowy sposób obliczeń metodą dynamiki molekularnej z pierwszych zasad współczynnika przewodności cieplnej 
materiału i zastosowano go do kryształów krzemu. Metoda bazuje na kinetycznej teorii fononowej przewodności cieplnej i daje możliwość obliczenia 
szeregu własności materiałowych (ciepła właściwego, współczynnika elastyczności, prędkości akustycznej, średniego czasu relaksacji fononów i 
współczynnika przewodności cieplnej) w określonej temperaturze. Metoda została zastosowana do kryształów krzemu a obliczone wielkości okazały 
się być zadowalająco bliskie do odpowiednich wartości eksperymentalnych. Zaproponowana metoda może być wykorzystana do obliczeń z 
pierwszych zasad przewodności cieplnej doskonałych i domieszkowanych półprzewodników. (Przewodność termiczna krzemu: badania 
teoretyczne z pierwszych zasad). 
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Motivation 

The silicon (Si) based materials and other wide band 
gap semiconductors remain the most frequently used 
substances for the fabrication of different electronic devices. 
Thermal characteristics of these materials and interfaces 
between them are therefore of great interest. 

Numerous theoretical techniques for determining lattice 
thermal conductivity have been reported in the literature [1] 
and have been applied to a wide range of materials. In an 
equilibrium molecular dynamics (EMD) simulation, the 
system under investigation has a constant average 
temperature and an average heat flux of zero [1]. However, 
at each instant of time a finite heat flux exists due to 
instantaneous fluctuations in temperature. The popular 
Green-Kubo method [2, 3], based on the general 
fluctuation-dissipation theorem [4], relates the lattice 
thermal conductivity of the system to the time required for 
such fluctuations to dissipate. 

In the present paper, new version of the ab initio 
equilibrium molecular dynamics (AIEMD) method based on 
the density functional theory (DFT) has been proposed. The 
method permits to calculate the coefficient of thermal 
conductivity of a material studied in the framework of the 
first principles approach. The main advantage of the 
method proposed is that the only routine EMD run and 
subsequent calculations of the corresponding values, such 
as root mean square deviation, mean square displacement, 
and spectral density of states, are sufficient to obtain the 
coefficient of thermal conductivity of a material studied. 
Also, the utilized ab initio DFT based approach ensures the 
universality and relatively high accuracy of the results 
obtained. 

 
Method and model of calculations 
The ab initio molecular dynamics (AIMD) simulations of 
silicon have been performed in the framework of the density 
function theory (DFT) using the VASP package [5]. The 
projector augmented-wave (PAW) method with a cutoff 
energy of 300 eV for silicon for the plane waves was 
employed [5, 6], together with the corresponding 
pseudopotentials. For the exchange and correlation terms, 
the gradient corrected Perdew-Burke-Ernzerhof (PBE) 
functional was used. Taking the large diamond super cells 

333 of Si into account (3a = 16.45 Å) only the  point in 
the Brillouin zone was considered for geometry 
optimization. The optimized structures were used as input 
for the computation of molecular dynamics (MD) 
trajectories. 

The AIMD calculations of Si were performed at the 
macro-canonical NVE ensemble for different temperatures 
and initially optimized super cell 333 at the temperature 
T = 0 K. Most results of the AIMD calculations have been 
obtained for the simulation time up to 15 ps with the time 
step of 1.5 fs. For postprocessing analyses the post MD 
calculation program used was nMoldyn 3.0 [7]. 

Using the obtained MD-trajectories the mean-square 
displacements (MSD) were calculated by the following 
relation: 
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where, 2 ( )d t
 denotes the MSD for ions of the -type, 

d(t) = R(t) – R(0), w is the weight coefficient and t the 
time. The velocity autocorrelation functions (VACF), 
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and the spectral density of states (SDOS) G(), as Fourier 
transformation of Fvv(t), 
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were calculated. According to Eq. (3) the value of SDOS at 
 = 0 gives the diffusion coefficient DG [7]: 
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When the above relations are applied to the case of 
thermal vibrations of atoms in solids without its migration 
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from certain unit cell site, one expects to obtain the phonon 
characteristics: thermal diffusion coefficient and phonon 
mean free time. 

In the case of relatively slow time dependent decrease 
of the amplitude of VACF (2) corresponding to a large mean 
free phonon time , the time of MD simulation should be 
sufficiently large to obtain reliable values of SDOS 
G( = 0) = G0 using the relation (4). For MSD given, the 
larger the mean free phonon time , the smaller the value 
G( = 0) is expected. One can use the following time, 
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as the mean free phonon time. The value 2 in (5) is the 
time averaged MSD. The latter relation is similar to the 
known Einstein-Smoluchowski equation for spatial atomic 
diffusion, 2 = 6Dt, where D is a diffusion coefficient [8]. 

According to the kinetic theory of phonon transport [9], 
the coefficient of thermal conductivity  is proportional to the 
mean free phonon path  (the average distance between 
phonon-phonon scattering) or the corresponding mean free 
phonon time , 

(6)                   = CVv/3 = CVv2s/3, 

where  is density of a material, CV is the specific heat at 
constant volume V, and v is a mean acoustic phonon 
velocity. Three temperature dependent values, CV, v, and  
may be determined separately from the results of ab initio 
MD calculations. The mean free phonon time  of the 
relation (5) obtained from MD calculations is expected to be 
equal to the mean free phonon scattering time s of the 
relation (6). This is the main idea of the present method. 

By performing two sets of MD calculation for two 
thermostat temperatures T1 and T2 at NVT ensemble, one 
can evaluate the specific heat CV, 
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where E1 and E2 are the corresponding total energies and m 
is mass of crystal supercell. 

The acoustic velocity v may be calculated from the 
elastic constant C and density  of a crystal according to the 
know relation, 
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To estimate the elastic constant C from the results of MD 
calculations one can use presentations of one atom energy 
in the forms of (A) thermal energy, 3kBT/2, and (B) 
mechanical energy (kinetic plus potential) of the 
corresponding effective oscillator, Kx2/2 + mv2/2 = Kx2. The 
characteristic atomic deviation x may be exchanged by the 
root mean square deviation (RMSD) R obtained from MD 
calculations at the temperature T (NVT or NPT ensembles), 
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Here, the coefficient K is a force constant, the value of 
which, if obtained, may be used for estimation of the elastic 
constant C according to the relation, 

(10)                                 CA = KL , 

resulted from the definitions of K and C values (A is an aria 
and L is a length of the model parallelepiped containing one 
effective oscillator). For silicon diamond structure of the 
cubic symmetry one can use A = L2. For L value, one can 
take the nearest neighbor distance dSi-Si = L = 2.35 Å, what 
is reasonable in view of the oscillator model used. 

Thus, on the basis of MD calculations performed at 
different temperatures one has possibility to estimate, in the 
framework of the model proposed, the temperature 
dependent specific heat CV(T), elastic constant C(T) (11), 
acoustic velocity v(T) (12), and phonon relaxation time (T) 
(5) of crystal, 
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These values in turn permit one to estimate the temperature 
dependent coefficient of thermal conductivity (T) of the 
crystal studied using the following relation, 
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In the present study, the results of AIMD calculations of 
the thermal conductivity of silicon are obtained in the 
framework of the above proposed model. 
 
Results and discussion 
The distributions G(f) at different temperatures are similar, 
however clear low frequency shift of the high frequency 
maximum at f = 14 THz is observed. Smaller low frequency 
shift is observed for the maximum at f = 4.5 THz. 
Simultaneously, no clear temperature widening of G(f) 
distributions is observed here (Fig. 1). These temperature 
changes of G(f) may indicate for the decrease of elastic 
properties of the crystal. 
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Fig. 1. Density of states G(f) of Si crystal at supercell 333 for 
different temperatures. Normalized density of states Gnorm(f) in the 
range of low frequency maximum are presented in the inset 
 

The temperature dependency of specific heat CV(T) at 
constant volume V is found to be an increasing function that 
is generally in agreement with experimental observations 
(Fig. 2). The absolute calculated values of CV are however 
about 30% larger than the corresponding experimental 
magnitudes CP (specific heat at constant pressure P) [10, 
11]. (For solids, the heat capacities CV and CP are close one 
to another.) 
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Fig. 2. Temperature dependencies of the calculated (squares) and 
experimental (circles) [10] and (triangles) [11] specific heat C(T) of 
Si crystal 
 

The temperature dependency of the calculated elastic 
constant C(T) of Si has been found to be close to the 
corresponding experimental data (Fig. 3). 
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Fig. 3. Temperature dependencies of the calculated (squares) and 
experimental (circles) [12] elastic constant C(T) of Si crystal 
 

Temperature dependency of the calculated coefficient of 
thermal conductivity 1(T) of Si has been found to be a 
decreasing function, that is similar to the corresponding 
experimental observation exp(T) (Fig. 4). 
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Fig. 4. Temperature dependencies of the calculated (squares) and 
experimental (circles) [13] coefficient of thermal conductivity (T) of 
Si crystal 
 

On the other hand side, the absolute magnitude of 
temperature decrease for the calculated coefficient |d/dT| is 
clear smaller than the similar value for the experimental one 
(Fig. 4). Taking into account the more close agreements of 
the calculated temperature dependencies of the heat 
capacity CV(T) and elastic constant C(T) (and consequently 
the acoustic velocity v(T)) with corresponding experimental 
ones discussed above, we have deduced that an estimation 

of the mean phonon relaxation time  by the relation (5) is 
not precise enough, because, at these circumstances, the 
only temperature dependency (T) may cause large 
differences between the calculated and experimental 
temperature dependencies of thermal conductivity, 1(T) 
and exp(T) (Fig. 4). For better matching of the calculated 
temperature dependency of thermal conductivity to the 
experimental one exp(T) [26] the following modification of 
the relation (5) for the mean phonon relaxation time has 
been chosen, 
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The parameters A and T0 (A = 0.67 , T0 = 450 K) ensure the 
best fit of the dependency 2(T) to the corresponding 
experimental one exp(T) [26]. We believe that the relation 
(14) may be used for the study of thermal conductivity of 
other silicon based materials and probably materials with 
similar covalent type chemical bonding. 
 
Conclusions 

The routine ab initio equilibrium molecular dynamics 
calculations of silicon crystals permits to calculate several 
properties (specific heat, elastic constant, and acoustic 
velocity) related to the calculation of thermal conductivity of 
the material with the accuracy about 30%. 

The relation proposed for calculation of the mean 
phonon relaxation time of silicon on the basis of the routine 
ab initio molecular dynamics values (mean square 
displacement and spectral density of states) permits to 
obtained the absolute values of the mean phonon relaxation 
time and coefficient of thermal conductivity and the 
corresponding temperature dependencies in good 
agreement with experimental data. 
 
The calculations were performed in the computer center 
ICM of Warsaw University in the framework of the project 
G26-3. 
 
Authors: prof. dr hab. Bohdan Andriyevsky, Koszalin University of 
Technology, Faculty of Electronics and Computer Sciences, 
Śniadeckich str. 2, 75-453 Koszalin, E-mail: 
bohdan.andriyevskyy@tu.koszalin.pl; prof. dr hab. Vasyl' Stadnyk, 
The Ivan Franko National University of Lviv, Faculty of Physics, 
Kyrylo-and-Mefodii Str. 8, UA-79005 Lviv, Ukraine. 
 

REFERENCES 
[1] S tackhouse  S., S t i x rude  L., Reviews in Mineralogy & 

Geochemistry 71 (2010) 253 
[2] Green  M.S., J. Chem. Phys. 22 (1954) 398 
[3] Kubo  R., J. Phys. Soc. Japan 12 (1957) 570 
[4] Kubo  R., Rep. Prog. Phys 29 (1966) 255 
[5] K resse  G., Jouber t  D., Phys. Rev. B 59 (1999) 1758; The 

guide of VASP, https://cms.mpi.univie.ac.at/marsweb/index.php 
[6] B löch l  P.E., Phys. Rev. B 50 (1994) 17953. 
[7] Róg  T., Murzyn  K., H insen  K., Kne l l e r  G.R., J. Comput 

Chem. 24 (2003) 657 
[8] Kaerger  J., Gr inberg  F., He i t j ans  P. (eds.). Diffusion 

fundamentals: Leipzig 2005, Leipzig University, 2005 
[9] Z iman  J.M., Electrons and Phonons. Oxford University Press, 

Oxford, 2001 
[10] Okho t i n  A.S., Pushkarsk i i  A.S., Gorbachev  V.V., 

Thermophysical Properties of Semiconductors, Moscow, 
"Atom" Publ. House, 1972, (in Russian) 

[11] Desa l  P.D., J. Phys. Chem. Ref. Data 15 (1986) 967 
[12] N ikanorov  S.P., Bu renkov  Yu.A., S tepanov  A.V., Sov. 

Phys. Solid State 13 (1971) 2516 
[13] G lassbrenner  C.J., S lack  G.A., Phys. Rev. 134 (1964) 

A1058 
 


