Oddział Technologii i Materiałoznawstwa Elektrotechnicznego we Wrocławiu, Instytut Elektrotechniki

doi:10.15199/48.2016.09.05

Badanie wpływu rodzaju warstwy transportującej dziury na parametry elektryczne polimerowych ogniw słonecznych na bazie PTB7:PC₇₁BM

Streszczenie. W artykule omówiono wpływ rodzaju warstwy transportującej dziury (HTL) na parametry elektryczne polimerowych ogniw fotowoltaicznych. Jako warstwę HTL zastosowano otrzymany metodą zol-żel tlenek molibdenu (MoO_x) oraz PEDOT:PSS. Warstwę aktywną w ogniwie stanowiła mieszanina donorowo-akceptorowa na bazie PTB7 i PC₇₁BM. Zbadano stabilność skonstruowanych polimerowych ogniw fotowoltaicznych w atmosferze powietrza po 8 dniach stwierdzając, iż ogniwa z warstwą MoO_x wykazują lepszą stabilność niż ogniwa z warstwą PEDOT:PSS. Aczkolwiek, najwyższą wartość sprawności fotowoltaicznej określono na poziomie 5,1% dla polimerowego ogniwa fotowoltaicznego z warstwą PEDOT:PSS. W pracy przedstawiono wyniki pomiarów absorpcyjnych w zakresie UV-Vis, impedancji w postaci charakterystyk Nyquista oraz oszacowano ruchliwość nośników ładunków dla skonstruowanych ogniw.

Abstract. The main goal of this paper was investigation influence of kind of hole transporting layer (HTL) on the electrical properties of constructed polymer solar cells. As HTL MoO_x obtained by sol-gel method and PEDOT:PSS was applied. The polymer solar cells devices were fabricated by spin coating the blend solution of poly({4,8-bis[(2-ethylhexy])oxy]benzo[1,2-b:4,5-b]dithiophene-2,6-diyl}{3-fluoro-2-[(2-ethylhexy])carbony]thieno[3,4-b]thiophenediyl} (PTB7) as donor and [6,6]-phenyl C71 butyric acid methyl ester (PC₇₁BM) as acceptor. Air stability of devices after 8th days were analyzed taking into consideration kind of HTL. Device with MoO_x exhibited better stability than solar cell with PEDOT:PSS. However, the highest value of the power conversion efficiency reaches the level of 5.10% for the polymer solar cell with PEDOT:PSS layer. Additionally, Nyquist plots of constructed devices along with charge mobility and optical properties of PTB7 and their mixture with PC₇₁BM were presented. (**Investigation of hole transporting layer kind on electrical properties of polymer solar cells based on PTB7:PC₇₁BM).**

Słowa kluczowe: fotowoltaika organiczna, polimerowe ogniwa słoneczne, warstwa transportująca dziury, zol-żel, PTB7, PC₇₁BM, PEDOT:PSS, MoO_x.

Keywords: organic photovoltaics, polymer solar cells, hole transporting layer, sol-gel, PTB7, PC71BM, PEDOT:PSS, MoOx.

Wprowadzenie

Na wartość sprawności polimerowych (organicznych) ogniw słonecznych wpływ ma zarówno rodzaj zastosowanych polimerów w warstwie aktywnej, rodzaj warstwy transportujacej dziury, architektura ogniwa, a także sposób zabezpieczenia ogniwa przed czynnikami zewnętrznymi (tlenem, wilgocią z powietrza) [1-6]. Najszerzej badanym dla zastosowań w fotowoltaice organicznej polimerem jest poli(3-heksylotiofen) (P3HT), zaś jako warstwę transportującą dziury (HTL) wciąż stosuje się PEDOT:PSS pomimo jego licznych wad [7-9]. Niewątpliwie w obecnych czasach prace dotyczące polimerowych ogniw fotowoltaicznych zmierzają już nie tylko w kierunku otrzymania wydajnych, ale także tanich oraz stabilnych w atmosferze powietrza ogniw [10].

Celem niniejszej pracy było zbadanie wpływu rodzaju warstwy transportującej dziury (PEDOT:PSS, MoO_x) na parametry elektryczne skonstruowanych polimerowych ogniw fotowoltaicznych na bazie PTB7:PC₇₁BM oraz określenie ich stabilności w trakcie przechowywania w powietrzu.

Część eksperymentalna

PTB7 Polimer (ang. poly({4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl}{3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl}), pochodna fulerenu PC71BM oraz chlorobenzen są produktami firmy Aldrich. PEDOT:PSS (PEDOT: poli(3,4-etyleno-1,4dioksytiofen), PSS: polistyren sulfonowany) oraz podłoża szklane z naniesioną warstwą ITO o rezystancji 20 Ω/kw firmie Ossila. Budowe zakupiono w chemiczna zastosowanych związków organicznych przedstawiono na rvsunku 1.

Synteza tlenku molibdenu metodą zol-żel

W celu uzyskania cienkiej warstwy MoO_x przygotowano zol mieszając bis(acetyloacetonato)dioksymolibden(VI) (prekursor 0,01g) w 2-propanolu (1,5 ml). Syntezę prowadzono na mieszadle magnetycznym w łaźni olejowej przez 1 godzinę w temperaturze 60°C. Warstwa została naniesiona na podłoże szklane pokryte ITO metodą wylania na wirujące podłoże (25 sekund z prędkością 4000 obrotów na min). Otrzymaną warstwę pozostawiono w temperaturze pokojowej w celu hydrolizy na czas 1 godziny. Następnie warstwę wygrzewano przez 20 min w temperaturze 150°C.

Rys. 1. Budowa chemiczna PTB7, PC_{71}BM i PEDOT:PSS użytych do konstrukcji polimerowych ogniw słonecznych

Konstrukcja polimerowych ogniw fotowoltaicznych

Na podłoże szklane pokryte ITO naniesiono metodą nanoszenia wirowego PEDOT:PSS lub MoO_x. Następnie tak przygotowane podłoża przeniesiono do komory rękawicowej gdzie naniesiono metodą nanoszenia wirowego warstwę aktywną składającą się z mieszaniny PTB7 i PC₇₁BM (1:1,5) z 3% dodatkiem dwujodooktanu. Elektrody aluminiowe naparowano pod ciśnieniem 5×10⁻⁵ Tora. Skonstruowane ogniwa były zahermetyzowane za pomocą żywicy epoksydowej i szkiełka nakrywkowego i poddane badaniom. Schematycznie budowę polimerowych ogniw słonecznych z PTB7:PC₇₁BM skonstruowanych w Instytucie Elektrotechniki (IEL) Wrocław przedstawiono na rysunku 2.

Aparatura badawcza

Charakterystyki fotowoltaiczne zostały wyznaczone przy wykorzystaniu urządzenia Solar Symulator Model SS100AAA z lampą ksenonową o mocy 500W i filtrem AM 1.5G. Dla otrzymanych polimerowych ogniw słonecznych wyznaczono: sprawność konwersji mocy (PCE), współczynnik wypełnienia (FF), napięcie obwodu otwartego ($V_{\rm oc}$) i gęstość prądu zwarcia ogniwa ($J_{\rm sc}$). Powierzchnia aktywna pojedynczego ogniwa słonecznego wynosiła 4,5 mm².

Pomiary impedancji (w funkcji częstotliwości) wykonywane były dla ogniw oświetlonych lampą halogenową za pomocą analizatora impedancji Solartron SI1260. Sygnałem pomiarowym był sygnał sinusoidalny o amplitudzie $U_m = 20$ mV i częstotliwości zmieniającej się od 1 MHz do 1 Hz. Oszacowano ruchliwość nośników ładunków w skonstruowanych ogniwach na podstawie pomiarów metodą czasu przelotu nośników (620 nm, 40 kV/cm).

Pomiary absorpcji UV-Vis dla MoO_x, PTB7 i PTB7:PC₇₁BM w roztworze i warstwie na podłożu szklanym wykonane zostały na spektrofotometrze Jasco V-670.

Rys. 2. Architektura polimerowych ogniw słonecznych z warstwą PEDOT:PSS lub MoO_{x}

Omówienie wyników badań

Pomiary optyczne

Przeprowadzone badania absorpcyjne w zakresie UV-Vis zarówno dla PTB7 i PTB7:PC₇₁BM wykazały, że badane związki silnie pochłaniają światło w zakresie 450-750 nm zarówno w roztworze chlorobenzenu jak i w warstwie (rys. 3), co predestynuje je do zastosowań w fotowoltaice. Z kolei dla otrzymanego metodą zol-żel MoO_x obserwowano w roztworze izopropanolu maksimum pasma absorpcji przy 317 nm.

Pomiary fotowoltaiczne

Dla skonstruowanych polimerowych ogniwa fotowoltaicznych na bazie PTB7:PC₇₁BM różniących się rodzajem warstwy transportującej dziury (PEDOT:PSS lub MoO_x) wykonano pomiary fotowoltaiczne pod kątem sprawdzenia stabilności ogniw po czasie (0-8 dni) w atmosferze powietrza. Otrzymane wyniki badań fotowoltaicznych przedstawiono w tabeli 1 i na rysunku 4.

Rys. 3. Widma absorpcji PTB7 i PTB7:PC71BM w roztworze i w warstwie na podłożu szklanym

Tabela 1. Parametry fotowoltaiczne dla polimerowych ogniw słonecznych z warstwą aktywną PTB7:PC₇₁BM

			(
Pomiary						Р
ogniw po	J _{sc}	Uoc	FF	PCE	R_s/R_{sh}	[µW]
czasie	[mA/cm ²]	[V]	[-]	[%]	[Ω]	
[dni]						
ITO/PEDOT:PSS/PTB7:PC71BM/AI						
1	14,31	0,643	0,50	4,59	321/11819	206
4	14,32	0,671	0,52	5,01	391/15657	226
5	14,28	0,673	0,53	5,10	388/17022	230
6	14,36	0,677	0,52	5,03	413/16033	226
7	14,31	0,666	0,52	4,94	410/14360	221
8	11,88	0,566	0,43	2,92	418/3344	132
ITO/MoO _x /PTB7:PC ₇₁ BM/AI						
1	14,21	0,553	0,36	2,82	573/4572	127
4	12,43	0,581	0,43	3,08	472/3536	138
5	12,42	0,584	0,43	3,08	477/4258	139
6	12,73	0,586	0,43	3,20	462/3540	144
7	12,49	0,585	0,43	3,13	463/3931	142
8	11,94	0,557	0,41	2,75	483/3685	124

Rys. 4. Charakterystyki J-U polimerowych ogniw fotowoltaicznych z warstwą aktywną PTB7:PC_{71}BM wykonane po 1-8 dniach od skonstruowania ogniwa

15.0

Na podstawie przeprowadzonych badań stwierdzono wpływ zarówno rodzaju warstwy transportującej dziury (HTL) jak i atmosfery powietrza na wartości parametrów fotowoltaicznych. Maksymalną sprawność równą 5,10% otrzymano dla polimerowego ogniwa fotowoltaicznego o architekturze ITO/PEDOT:PSS/PTB7:PC71BM/AI po 5 dniach od skonstruowania ogniwa. Dla ogniwa z warstwa MoOx najwyższą wartość PCE zaobserwowano po 6 dniach od skonstruowania ogniwa. Obserwowany wzrost sprawności dla obu typów ogniw w ciągu kilku pierwszych dni od skonstruowania może być wytłumaczony zachodzącym procesem utleniania warstwy HTL pod wpływem tlenu (prawdopodobnie jest to utlenienie pod wpływem pozostającej w ogniwie śladowej ilości tlenu oraz tlenu dyfundującego przez pierścień żywicy epoksydowej w trakcie przechowywania ogniw w powietrzu) [10].

Z przeprowadzonych badań wynika iż ogniwa fotowoltaiczne z warstwą PEDOT:PSS wykazują wyższą wartość PCE niż ogniwa z MoO_x jak graficznie przedstawiono na rysunku 5. Obecność warstwy PEDOT:PSS w ogniwie fotowoltaicznym z PTB7:PC71BM wpływa również na otrzymanie wyższych wartości J_{sc} , U_{oc} i FF (tabela 1 i rys. 5).

Rys. 5. Zależność PCE i $U_{\rm oc}$ od czasu (dni) dla polimerowych ogniw fotowolta
icznych z warstwą PEDOT:PSS i MoO_x

Badania impedancji oraz ruchliwości nośników ładunków

Dla skonstruowanych polimerowych ogniw fotowoltaicznych wykonano badania impedancji dla ogniw świeżo skonstruowanych i po 8 dniach oraz oszacowano ruchliwość nośników ładunków. Wykresy Nyquista dla skonstruowanych ogniw przedstawiono na rysunku 6.

Na podstawie przeprowadzonych badań impedancji stwierdzono dla ogniwa ITO/PEDOT:PSS/PTB7:PC₇₁BM/Al badanego po ośmiu dniach od skonstruowania zmniejszanie się wartości impedancji rzeczywistej (Z') i urojonej (Z") w kierunku niższych częstotliwości co dobrze koresponduje ze zmniejszającą się również wartością rezystancji skrośnej (R_{sh}) i ma związek także ze zmniejszaniem się współczynnika wypełnienia (FF) (tabela

1). Efektu tego praktycznie nie obserwowano dla ogniwa z warstwą MoO_x (rys. 6). W tym przypadku półokrąg dla ogniwa badanego w ósmym dniu jest nieznacznie większy niż dla ogniwa badanego w dniu jego skonstruowania. Potwierdzeniem tych obserwacji jest fakt nieznacznie wyższej wartości FF = 0,41 po ośmiu dniach niż dla ogniwa "świeżego" (FF = 0,36). Dla skonstruowanych ogniw oszacowano za pomocą oscyloskopu ruchliwość nośników ładunków (elektronów) na poziomie ~2·10⁻⁷ cm²/(V·s) dla natężenia pola elektrycznego 40 kV/cm, dla warstwy aktywnej o grubości około 100 nm.

Rys. 6. Wykresy Nyquista dla polimerowych ogniw fotowoltaicznych z PEDOT:PSS i MoO_x (badane 1 i 8 dnia od skonstruowania) oraz zdjęcia z mikroskopu optycznego dla warstw szkło/ITO/PEDOT:PSS i szkło/ITO/MoO_x

Podsumowanie

Na podstawie przeprowadzonych badań stwierdzono że:

✓ Ogniwa z warstwą PEDOT:PSS wykazują wyższą wartość sprawności (PCE = 5,10%) niż ogniwa z warstwą MoO_x (PCE = 3,20%). Niewątpliwie efektem tych różnych zachowań jest morfologia i grubość warstwy HTL. Wykonano wstępne obserwacje za pomocą mikroskopu optycznego dla warstw PEDOT:PSS (d ~50 nm) i MoO_x (d ~20 nm) naniesionych na szkło/ITO stwierdzając, iż warstwa PEDOT:PSS jest bardziej jednorodna niż warstwa MoO_x (rys. 6).

✓ Ogniwa z warstwą MoO_x są stabilniejsze w czasie niż ogniwa z warstwą PEDOT:PSS i badane po 8 dniach wykazują około 2,5% ubytek sprawności w porównaniu z ogniwem "świeżo" skonstruowanym.

✓ Badany polimer PTB7 wykazuje szeroki zakres absorpcji (450-750 nm) oraz $Eg^{opt.}$ = 1,65 eV, co predestynuje go do zastosowań w fotowoltaice.

Podsumowując, maksymalną sprawność równą 5,1% otrzymano dla polimerowego ogniwa fotowoltaicznego o architekturze ITO/PEDOT[•]PSS/PTB7[•]PC₇₁BM/AI. Dalsze prace będą prowadzone w kierunku optymalizacji metody nanoszenia warstwy HTL oraz modyfikacji architektury ogniwa.

Autorzy: dr hab. Agnieszka Iwan, prof. IEL, mgr inż. Bartosz Boharewicz, mgr inż. Agnieszka Hreniak, mgr inż. Igor Tazbir, Oddział Technologii i Materiałoznawstwa Elektrotechnicznego we Wrocławiu, Instytut Elektrotechniki, ul. M. Skłodowskiej-Curie 55/61, 50-369 Wrocław, E-mail: <u>a.iwan@iel.wroc.pl</u>

LITERATURA

- Zhan X., Zhu D., Conjugated polymers for high-efficiency organic photovoltaics, *Polym. Chem.*, 1, (2010), 409-419
- [2] Palewicz M., Iwan A., Photovoltaic phenomenon in polymeric thin layer solar cells, *Current Phys. Chem.* 1, (2011). 27-54
- [3] Leever B.J., Bailey C.A., Marks T.J., Hersam M.C., Durstock M.F., In Situ Characterization of Lifetime and Morphology in Operating Bulk Heterojunction Organic Photovoltaic Devices by Impedance Spectroscopy, *Adv. Energy Mater.* 2, (2012), 120-128
- [4] Iwan A., Boharewicz B., Tazbir I., Filapek M., Enhanced power conversion efficiency in bulk heterojunction solar cell based on new polyazomethine with vinylene moieties and [6,6]-phenyl C₆₁ butyric acid methyl ester by adding 10-camphorsulfonic acid, *Electrochimica Acta*, 159, (2015), 81-92
 [5] Iwan A., Boharewicz B., Tazbir I., Filapek M., Korona K.P.,
- [5] Iwan A., Boharewicz B., Tazbir I., Filapek M., Korona K.P., Wróbel P., Stefaniuk T., Ciesielski A., Wojtkiewicz J., Wronkowska A.A., Wronkowski A., Zboromirska-Wnukiewicz B., Grankowska-Ciechanowicz S., Kaminska M., Szoplik T., How do 10-camphorsulfonic acid, silver or aluminum nanoparticles influence optical, electrochemical, electrochromic

and photovoltaic properties of air and thermally stable triphenylamine-based polyazomethine with carbazole moieties?, *Electrochimica Acta*, 185, (2015), 198-210

- [6] Iwan A., Palewicz M., Tazbir I., Boharewicz B., Pietruszka R., Filapek M., Wojtkiewicz J., Witkowski B.S., Granek F., Godlewski M., Influence of ZnO:AI, MoO₃ and PEDOT:PSS on efficiency in standard and inverted polymer solar cells based on polyazomethine and poly(3-hexylthiophene), *Electrochimica Acta*, 191, (2016), 784-794
- [7] Ameri T., Khoram P., Min J., Brabec C.J., Organic Ternary Solar Cells: A Review, Adv. Mater. 25, (2013), 4245-4266
- [8] Heo S.W., Baek K.H., Lee T.H., Lee J.Y., Moon D.K., Enhanced performance in inverted polymer solar cells via solution process: Morphology controlling of PEDOT:PSS as anode buffer layer by adding surfactants, *Org. Electr.* 14, (2013), 1629-1635
- [9] Jung J.W., Lee J.U., Jo W.H., High-Efficiency polymer solar cells with water-soluble and self-doped conducting polyaniline graft copolymer as hole transport layer. *J. Phys. Chem.* C 114, (2010), 633-637
- [10] Petrus M.L., Bein T., Dingemans T.J., Docampo P., A low cost azomethine-based hole transporting material for perovskite photovoltaics, J. Mater. Chem. A, 3, 1(2015), 2159-12162