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Conditional averaging models of exponentially correlated data 
 
 

Abstract. The article investigates a real model of exponential correlation which is obtained by signals with a limited band with features of white noise 
passing through physical inertial systems. In the investigated models, the subsequent conditionally averaged implementations of the signal 
exceeding the threshold xP with a derivative with a random sign are significantly correlated, while the implementations of the signal exceeding the 
threshold xP with a derivative with a given sign can be practically considered as uncorrelated. Such a method of conditional averaging can be 
recommended in practical applications. 
 
Streszczenie. W artykule badano realny model skorelowania wykładniczego, który uzyskują sygnały z ograniczonym pasmem o cechach szumu 
białego, przechodzące przez fizyczne układy inercyjne. W badanych modelach kolejne warunkowo uśrednione realizacje sygnału przekraczające 
próg xP  z pochodną o dowolnym znaku są istotnie skorelowane a realizacje sygnału przekraczające próg xP z pochodną jednego znaku można 
praktycznie uznać za nieskorelowane. Taki sposób uśredniania może być zalecany w zastosowaniach praktycznych. (Modele warunkowego 
uśredniania danych skorelowanych wykładniczo). 
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Introduction 

The correlation of signals and measurement data 
impedes the estimation of their statistic characteristics. In 
the majority of existing metrological documents and 
recommendations intended for use the influence of data 
correlation is most often not taken into account. Many 
authors point out in their specialist publications (e.g. [1-3]) 
to the necessity of accounting for the influence of 
autocorrelation in the evaluation of measurement 
uncertainty.  

The exponential shape of the autocorrelation function is 
a relatively prevalent model in the processing and 
description of analogue stochastic signals. In practice, the 
model of exponential correlation is obtained by signals with 
a limited bandwidth with the features of white noise passing 
through physical inertial systems. Due to the central limit 
theorem and the inertia of typical processing systems, 
distributions of physical signals are usually normal or quasi-
normal.  

In measurement tasks, in order to evaluate data one can 
make use of conditional probability characteristics, and in 
particular conditional expected values and conditional 
variances [4]. 

In algorithms of conditional averaging using the 
maximum number of conditions pxtx )(  starting the 

averaging, the degree of correlation of subsequently 
averaged portions of the signal becomes problematic. 
Further on in this article, selected test results of correlating 
the implementations of subsequent instances of exceeding 
the level px initiating conditional averaging for a normal 

distribution and exponential correlation of the signal )(tx . 
 
Averaging models 

In the basic applications of conditional averaging of 
Gaussian random signals, characteristics of a linear 
regression are used. For a stationary signal )(tx with the 

distribution ),0( xN   and a normalised autocorrelation 

function )(x  the conditional expected value and the 

conditional variance are represented by relations: 

(1)      112 xxxE x  , 

(2)       22
12 1 xxxxVar  , 

where: 1x  and 2x  - signal values )(tx  in the moments 

1t and 2t  respectively; 12 tt  . 

 An example of implementation of a random signal with 
the selected parameters in the categories of time and value 
marked is provided in Figure 1a. In practice, the model of 
exponential correlation is obtained by signals with the 
features of white noise with a limited bandwidth of 
frequency B passing through physical inertial systems with 
the time constant T , while 5,2BT . This model of 
exponential correlation is illustrated in Figure 1b and 
described by the autocorrelation function (3). For 0  the 
autocorrelation function (3) has a finite value of the 
derivative [4].  
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Fig.1. Implementation of random signal (a) and an experimental 
exponential correlation characteristic (b) 
 

In conditional averaging of the signal )(tx  in real time, 

in order to obtain a full mapping of the normalised 
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exponential autocorrelation function )( x  one ought to 

assume the averaging time rT  equal to the maximum 

correlation interval km , which for the exponential 

correlation model equals k3 , where k  is the correlation 

interval. The subsequently averaged portions with duration 
time dirT   are uncorrelated (Fig. 1). 

For a stochastic input signal )(tx  in the form of white 

noise limited by a low-pass RC filter with the exponential 
autocorrelation function   x  and the distribution 

),0( xN   , the average time between the subsequent 

instances of passing the given level px  with a derivative 

with a given sign equals [4]: 
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Example 1 

For low-pass white noise in the band kHzB 25  filtered 

with an RC system with the time constant sT 410  , 
Table 1 presents the calculated and rounded values of the 
relation kmp   for several values xpx   . The 

subsequent averaged portions of the signal for 1  are 
uncorrelated.  

 
Table 1. Values of the relation kmp   

  0 1 2  2 

km

p




 0.70 1.15 1.90 5.16 

 
In a simplified model of averaging, with M uncorrelated 

and averaged (after exceeding the threshold pxtx )(1 ) 

fragments of the implementation of the signal )(tx , the 

evaluation of the relative standard uncertainty of the 
conditional value of the arithmetic mean (CVAM) equals: 

(5)       
 
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It results from the formula (4) that in order to decrease 
the uncertainty of evaluation, the value px  should be as 

high as possible. However, its increase will at the same 
time cause a decrease of the number M  of averaged 
implementations (for a high value of   exceeding the 

threshold level px  initiating averaging happens less 

frequently), which in turn will lead to an increase of 
uncertainty. Both given conditions are mutually opposed 
and they require determining a compromise value   with 
the selected practical measurement method. 

In the measurement and analysis system the 
registration of the signal )(tx  with the length 0T  occurs. 

Next, portions of the signal )(tx of the length rT  are 

analysed from the moments of exceeding the level px by 

the signal )(tx . In the time of observation 0T  the number of 

analysed portions of the signal )(tx  will occur on average 

M times: 
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After accounting for the relations (4) and (6) and introducing 
the designations: 
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one obtains an evaluation of the relative standard 
uncertainty of CVAM: 

(8)  
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The expression thus arrived at allows one to determine 
the conditions at which    assumes minimum values. In 

order to do that, one needs to calculate the derivative of 
 



d

d
 and set it to zero: 
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When taking into account the data from Example 1, one 
obtains a condition for determining the optimal value opt : 

(10) 
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Assuming the parameters of the signal )(tx  allows one 

to calculate the relation of ab / , and then to solve the 
equation (10) and determine the optimal value of factor 

opt .  

For the data from Example 1: RCT kmr 3 , 

1,2ab  and 517,1opt . 

For other models of low-pass noises the value of the 
threshold px  initiating the averaging with uncorrelated 

samples and ensuring a small variance of the CVAM 
characteristic should be included in the range 

xpx x  22   [4]. 

In conditional averaging within the post-processing of a 
digitally registered long implementation of the signal )(tx  

and using all subsequent conditions of exceeding the level 

px  with the derivative with a random sign, the subsequent 

implementations are correlated [4]. While the value of px  

increases, the variance of the conditional arithmetic mean 

pi xx |  depends largely on the value p  of the average 

time the signal x(t) remains above the level px  and the 

correlation value   1 px  (Fig. 2).  

 

 
Fig.2. Characteristic of data correlation 
 
Example 2 

For the model (3) of exponential correlation one needs 

to calculate the average time p  between the subsequent 

instances of exceeding the level xpx 2  by the signal 

x(t) as well as the correlation 
1
  of these values (Fig. 2) 

Model of the correlation function: 
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With a limited time 0T  of observing the signal )(tx  in 

order to increase the number M  of averages of conditional 
implementations it may be necessary to use all the 
conditions of exceeding the threshold   by the signal. In 
practical analyses the number of averaged implementations 
should not be below M  = 50. In calculating the 
approximate consequences of correlation one may use the 
arithmetic mean of values of average times of positive and 
negative instances of exceeding the level   by the signal 

)(tx : 
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As an example, for the data provided in Table 1, one arrives 

at the value kmpsr  95,0  with 2  and 

  06,01  psrx  . 
In the last model of conditional averaging, with an 

appropriately large number M  of implementations, the 

variance of the CVAM characteristic in point ix  can be 

represented by the relation [4]: 
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where 2
ix  is a variance of the set of averaged 

implementations of the signal )(tx  at the i-th cross-section. 

In another statistical model, in the overall number M2  
of arithmetically conditionally averaged implementations, at 
first one averages M  implementations with positive values 
of the derivative with the threshold condition px , followed 

by averaging of M  implementations with a negative 
derivative, and at the end both conditionally obtained 
means as random variables are also correlated 
arithmetically. 

For averaging the uncorrelated implementations ax  and 

bx  exceeding the threshold px  with a positive and 

negative derivative, the conditional variances of the 
implementations equal: 

(13)         2222 1 xxxbwxaw  . 

With the assumption averaging implementations the 

beginnings of which are on average p apart in the signal, 

the conditional variance of the sum of averaged and 

correlated variables ax  and bx  for 0  will equal: 

(14)     pxxxw  122 2 . 

For times of delay 0  the conditional variance of the sum 

of variables ax  and bx  is described by the relation: 

(15)         222 112 xpxxxw    . 

The occurrence of correlation results in an increase of the 
variance of the arithmetical mean. 
For example for the data: 

2 ; kmp  15,0 ;   64,0px  ; 

  xxxw  81,164,012   

the general formula expressing the relative standard 
uncertainty of CVAM in the investigated model of correlation 
equals: 
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Examples of conditional implementations 
In Figures 3 and 4 observed conditional implementations 
were presented. What is visible is a larger variance of 
implementation while averaging with derivatives of both 
signs (4a) when compared with averaging with the 
derivative with one sign (4b). 

In Figure 5 an example of implementations initiated by 
all subsequent positive and negative instances of exceeding 
the threshold Vx p 1  are presented. The distribution of 

implementations for s 10  is comparable with Figure 4a 

and it is an example of calculation based on the expression 
(15). 

 
Fig.3. Examples of implementations exceeding the threshold 

Vx p 1  with both derivatives 

 

 
Fig.4. Conditional implementations observed on a digital 
oscilloscope: a) releasing registrations with derivatives of both 
signs; b) releasing registrations with the derivative of one sign 

 
Fig.5. An example of implementation presenting a set of 
subsequent positive and negative instances of exceeding of the 

threshold Vx p 1 by the signal  tx . 

 
Summary 
1. In practice, the real model of exponential correlation 
occurs frequently and it is obtained by signals with a limited 
bandwidth with the features of white noise passing through 
physical inertial systems. 
2. In measuring applications for the assessment of data 
correlation with normal and quasi-normal distribution, 
operations of conditional data averaging can be used. 
Determining statistical links with the use of conditional 
averaging of signals is particularly beneficial in the 
conditions of strong data correlation. 
3. In the model of exponential correlation, subsequent 
averaged implementations of the signal exceeding the 
threshold with a derivative of any sign are significantly 
correlated, while the correlation causes the conditional 
variance of the average value to increase. 
4. In models of exponential correlation the averaged 
implementations of the signal exceeding the threshold 

px with a derivative of one sign can practically be 

considered uncorrelated. Such a way of conditional 
averaging can be recommended for practical applications. 
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