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Defuzzification with Optimal Representation Method 
 
 

Abstract. Though the number of existing defuzzification methods is considerable, scientists further work on the new methods trying to elaborate 
more perfect ones and eliminate imperfection and weak-points of existing methods. The paper proposes a new defuzzification method, which in the 
authors opinion, has chances for scientific acknowledgement because it is based on a new approach. In this method there is no aggregation of 
activated rule conclusions as in many other methods. Instead of aggregation, the method determines the best, optimal fuzzy representation of the 
activated conclusions and then finds the optimal crisp representation. The main advantage of the proposed method is simplicity of calculations.  
 
Streszczenie. Choć liczba istniejących metod defuzyfikacji jest znaczna, naukowcy prowadzą dalsze prace nad nowymi metodami, starając się 
opracować bardziej doskonałe i wyeliminować niedoskonałości istniejących już metod. W pracy zaproponowano nową metodę defuzyfikacji, która w 
opinii autorów, ma szanse zdobycia uznania w środowisku naukowym, ponieważ pokazuje zupełnie nowe podejście. W sposobie tym nie ma 
agregacji zaktywowanych reguł wnioskowych tak jak w wielu innych metodach. Zamiast agregacji, metoda wyznacza najlepszą, optymalną rozmytą 
reprezentację aktywowanych wniosków, a następnie znajduje optymalną punktową reprezentację. Główną zaletą proponowanej metody jest prostota 
obliczeń.(Defuzyfikacja metodą Optymalnej Reprezentacji). 
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Introduction 

There exist a considerable number of defuzzification 
methods (D-methods) of the aggregated inference result of 
a rule base [1]. Out of more methods proposed so far, let us 
list 22 methods [2] here: adaptive integration method (AI), 
basic defuzzification distributions method (BADD), 
constraint decision defuzzification method (CDD), center of 
area method (COA), center of gravity method (COG), 
extended center of area method (ECOA), extended quality 
method (EQM), fuzzy clustering defuzzification method 
(FCD), fuzzy mean method (FM), first of maximum method 
(FOM), generalized level set defuzzification method 
(GLSD), indexed center of gravity method (ICOG), influence 
value method (IV), last of maximum method (LOM), mean 
of maxima method (MeOM), middle of maximum method 
(MOM), quality method (MOM), quality method (QM), 
random choice of maximum method (RCOM), semi-linear 
defuzzification method (SLIDE), [3] , [4] , weighted fuzzy 
mean method (WFM) and Golden Ratio defuzzification 
method (GR). Literature on defuzzification is rich and in 
References only small part of publications on the subject 
was cited. The defuzzification component, as important part 
of a fuzzy model, has been investigated since about 1970 
and in eyes of fuzzy community this subject seems to be 
completely investigated and finished. However, it is not true. 
Again and again scientists come back to the defuzzification 
and present new ideas on how to realize this operation. 
Examples can be papers [5] and [6] in 2015. When we 
solve a problem we should try to choose the best 
defuzzification method. However, what is the meaning of 
“the best method”? It means that a multicriterion consisting 
of a series of component criteria specific for the problem 
and depending on the scientist individual preferences 
should be used. E.g. in [7] the defuzzification algorithm has 
been hardware-realized and oriented and hence it should 
not require a great memory for operations, see also [8]. 
Author of [9] gives advices how to choose a D-method to a 
given application. There exist also interesting works 
presenting evaluations of particular D-methods, e.g. [10] 
and [9]. In [10] authors draw the readers’ attention to the 
fact that optimality of a D-method depends on specificity of 
the concrete application. E.g. methods using "maxima" are 
more appropriate for fuzzy reasoning systems while 
methods using "area" are more suitable for fuzzy 
controllers. The numbers of possible criteria and of required 
properties used for D-methods evaluation is considerable. 

Examples of desired properties (criteria) are: property of a 
scale invariance, of monotony, satisfying the triangular 
conorm criteria, property of x-translation, of x-scalling, of 
continuity, of computational efficiency, and of transparency 
(of easy understanding). Thus the choice of the optimal D-
method is multicriterial one, scientist-dependent 
(significance evaluation of particular component-criteria 
dependent and application-dependent). But generally we 
can evaluate quality of particular D-methods on the basis of 
their popularity (use frequency) in the fuzzy community. 
Many publications on D-methods inform that 2 methods are 
mostly used: Center of Gravity (COG) method and Mean of 
Maxima (MeOM) method. The second method is derived 
from COG-one and calculates the mean of all elements of 
the core of a fuzzy set. Hence, in fact it can be called “the 
COG of the core” method. COG-method calculates, 
according to [10] the expected value when fuzzy set A is 
considered [3] to be a probability distribution (1). 
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Mean of Maxima (MeOM) calculates the mean of all 
elements of a fuzzy set A (2).    
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The Optimal Representation (OpR) method proposed in this 
paper is based on a new (according to authors’ knowledge) 
approach to defuzzification. 
 
General description of the Optimal Representation 
(OpR) method 

Let us assume that the rule base describing the 
dependence y=f(x1,…,xk) between input variables   {x1,…, xk} 
and the output variable y of a system consists of n rules (3) 
in which i is the rule number i=1÷n and j is the variable 
number j=1÷k.     

  

(3) IF (x1 is B11) AND (x2 is B12) AND … AND (xk is B1k) THEN (y is A1)   
                                                      : 
       IF (x1 is Bn1) AND (x2 is Bn2) AND … AND (xk is Bnk) THEN (y is An)   
 

Each of the particular rules Ri can be interpreted as an 
expert that possess knowledge about value of the output 
variable y only in a local sub-domain of the system domain 
X1i×X2i×,…,×Xki, where Xji are domains of particular input 
variables. If on the system inputs a vector {x1,x2, …,xk} of 
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concrete numerical variable values is applied then as the 
inference result conclusions of particular rules Ri will be 
activated (fired) to degrees wi. Example of rule-conclusions 
activation is shown in Fig. 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.1. Example of rule conclusion activation as a result of inference 
in a fuzzy system with non-extended border fuzzy sets.  
 

In the case of only the maximal activation (firing) of the 
border sets A1(y) and An(y), after defuzzification border 
values ymin or ymax should be calculated. In a fuzzy model 
with non-extended border sets and with COG 
defuzzification, achievement of ymin or ymax is not possible. 
To enable it the output variable domain [ymin,ymax] should 
artificially be extended to [ymin –SA1,ymax+SAN] = [ymin

*,ymax
*], 

where SA1 and SAN are supports of border fuzzy sets. In the 
case of the example from Fig.1 the artificially extended 
domain of variable y is shown in Fig.2. 
 
 
 
 
 
 
 
 
 
 
 
Fig.2.Example fuzzy sets of the output variable y activated by 
Center of Gravity method. 
 

Depending on concrete values of input variables           
{x1,x2,…,xk} the inference process causes different activation 
{wA1,…,wAn} of particular fuzzy sets Ai of rule conclusions. 
The activation degrees are frequently interpreted as the 
conclusions’ truth. In the mostly used COG method, on their 
basis, the aggregated MF of the output variable y is then 
determined. For activated MFs from Fig.2 it has form shown 
in Fig.3. 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.3. Conclusions of a rule base with repeating fragments D3 and 
D4 of fuzzy sets A2, A3 and A4

* (extended A4) aggregated with 
operator Max. 
 

One can observe that fragments D3 and D4 of fuzzy sets 
A2, A3 and A4

* (extended A4) occur two times in conclusions 
(in the pair A2, A3 and in A3, A4). It causes certain inaccuracy 
in calculations of the crisp result y* of defuzzification. With 

COG method in the example shown in Fig.3 the crisp result 
is achieved yCOG

*=7.539.   
   In the OpR defuzzification method following steps should 
be made: 

1. Determine generalizing membership function (GMF) 
for all fuzzy sets of the output variable y. 

2. Using activation degrees wAi of particular conclusions 
Ai determine the optimal representative fuzzy set Ai of 
all activated conclusions. To this aim choose the 
optimality criterion. 

3. For the optimal representative set Ar determine the 
optimal crisp (singleton) representation value yR. To 
this aim choose the optimality criterion.  

Further on the OpR defuzzification method will be shown on 
an example. 
 
Example of defuzzification with Optimal Representation 
method 
 Let us assume that in the course of inference fuzzy sets 
of the output variable y has been activated as shown in 
Fig.2 and values of the activations are as follows: 
wA1

*= 0, wA2= 0.25, wA3= 0.75, wA4
*= 0.50. For calculative 

convenience activation values will be normalized according 
to (4).                                                                                  
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After the normalization the activation values are as follows: 
wA1N

*= 0, wA2N= 1/6, wA3N= 3/6, wA4N
*= 2/6. In the OpR-

method conclusions Ai of particular rules are understood as 
fuzzy expert-evaluations informing about approximate value 
of the output variable y corresponding to the input vector 
{x1, … ,xk} applied to the system. Each of rules Ri is an 
expert possessing knowledge about approximate value of 
variable y in its local sub-domain of the full input-domain 
X1×X2× … × Xk. Activation values of conclusions do not 
necessarily have to be interpreted in the traditional way as 
in the COG-method, as shown in Fig.2 and Fig.3. They can 
be interpreted as competence degrees of particular experts 
(rules) to determine output value y for given input vector 
{x1,x2, …,xk}. Hence activation values can graphically be 
interpreted as greyness-degrees of particular conclusions 
Ai, see Fig.4. One can also observe that fuzzy sets Ai are of 
different qualitative type: triangle- and trapezoid-ones. 

 
 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
Fig.4. Conclusion activations wAi as competence degrees of rules Ri 
influencing full membership functions of conclusions (greyness 
degrees) used for determining of the resulting crisp output value yR 
of a fuzzy model. 
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Step 1 of the OpR method – determining the generalizing 
membership function (GMF) for all fuzzy sets Ai of the 
output variable y. 
Among MFs of variable y occur 2 qualitative types of MFs: 
triangle and trapezium functions. The triangle MF is a 
special case of trapezoid MF, Fig.5. 
 
 
 

 
 

 
 
 
 
 
 
 
Fig.5. The triangle MF as a special case of the trapezium MF, yr- 
characteristic points determining the trapezium MF, r=1÷4. 
 

As the generalizing MF such MF should be understood 
which contains (or from which can be derived as a special 
case) all types of MFs occurring in rules conclusions of the 
output variable y. Generalizing MFs can be determined not 
only for linear-segment MFs but also for other function 
types: Gauss MFs, polynomial  MFs [11], etc. However, it is 
not subject of this paper. Trapezium MF is given by (5)              
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As can be seen from (5) the trapezium MF is fully 
determined by positions y1, y4 of its support and positions  
y2, y3 of its core. Hence, these points can be called 
characteristic points of the trapezium MF. 
 
Step 2 of the OpR-method – Determining the MF optimally 
representing all weighted rule conclusions. 
In Step 2 a fuzzy set AR is to be determined that optimally, 
according to the assumed criterion, represents all activated 
conclusions Ai with taking into account normalized weight 
(activation) coefficients wAiN. As the optimality criterion 
various criteria can be assumed depending on the 
modeler’s preferences and the system specificity. 
Frequently chosen and used criterion is the criterion S of the 
minimal sum of square, weighted differences of the 
representing set AR and the activated conclusion sets Ai. Let 
us denote by                      y1R,…,y4R characteristic points of 
the representing MFR, where r=1÷4 is the number of 
characteristic point. The criterion S –value should be 
minimized (6). 
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The optimal value of the representing characteristic 
function-point yrR of the MFR satisfies the condition (7). 
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From condition (7) condition (8) can be derived. 
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Because the sum satisfies condition 
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optimal value of yrR has the form of (9) 
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Thus, the optimal value of yrR is the weighted average. For 
particular parameters of MFR following values are achieved: 
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Fig.6b. shows the optimal MFR representing 3 activated 
(wAiN > 0) rule conclusions Ai shown on Fig.6a. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.6. Activated to various degrees rule conclusions A2, A3, 
A4* and a membership function MFR of the set AR optimally 
representing them. The value yCOGR = 5.8052 is the crisp 
value optimally representing the representative fuzzy set AR. 
 

The representative set AR is the optimal fuzzy conclusion 
from the full rule base. However, we can further try to 
represent this fuzzy conclusion by only one crisp value yR. 
To this aim also an optimality criterion has to be chosen. 
One of possible criteria can be the criterion of minimal sum 
of weighted square differences between yR and all possible 
values of the output y contained in the representative fuzzy 
set AR. Hence, the sum D has to be minimized in respect of 
yR (10). 
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The optimal value yR can be found from condition (11) 

 
Fig.6a.Activated rule conclusions Ai 

 

 
 

Fig.6b. The optimal MFR of the set AR 
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The solution is given by (12).                                       
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Thus, the optimal singleton representation yr of the 
representative fuzzy set AR is according to the assumed 
criterion (6) the center of gravity. Other types of criteria will 
result in other representations yR. In the considered 
example, according to the OpR method, the singleton 
representation has value yR = 5.805. 
 
Conclusions 

The paper presented, according to authors’ knowledge, 
a new defuzzification method, which in the first step 
determines the optimal, representative fuzzy set AR and in 
the second step the crisp value yR, which in the optimal way 
represents the representative fuzzy set AR. The method 
called shortly OpR-method possess following features: 
1. It is simple in calculations, considerably easier than 

COG-method because the geometric form of the 
representative fuzzy set AR is simpler than usually 
complicated form of the aggregated conclusion set 
achieved from the inference in the frame of COG- 
method. Also the support (uncertainty) of the set AR is 
considerably smaller. 

2. In the OpR-method the geometric form of the 
representative ser AR and the crisp representative value 
yR is influenced by all activated conclusions of the rule 
base. The influence of the geometric conclusions’ forms 
does not exist in many defuzzification methods where 
fuzzy conclusions are replaced by singleton values. 

3. In defuzzification with OpR-method take part full 
conclusions of all activated rules. In commonly used D-
methods as COG-one conclusions occur only one time. 
In COG-method fragments of neighbor conclusions 
which overlap in the aggregated conclusion of the rule 
base take part in defuzzification also only one time. In 
the OpR-method they occur as frequently as the rule 
conclusions containing them. In this method nor full 
conclusions or their parts are eliminated from 
defuzzification. 

4. OpR-method has no probabilistic character as Yager 
and Filev suggested in the case of COG-method in 
[3,4,10]. It is a method of replacing many uncertain 
conclusions by their simpler and less uncertain 

representation based on the assumed optimality 
criterion. Choice of this criterion is the individual matter 
of the fuzzy system modeler and there does not exist 
any “objective” criterion for this choice. Center of gravity 
of a fuzzy set is only one of possible crisp 
representations of a possibility distribution 
corresponding to the criterion of the minimal sum of 
square differences (10). 

5. It seems that the OpR-method well suits both to fuzzy 
modeling and control problems and to fuzzy reasoning 
because of its “democratic” approach: its democratic 
taking into account all rule conclusions and their 
significance (competence) degrees. 
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