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Real-time measurement of signal to noise ratio for harmonic 
signals 

 
 

Abstract. The paper presents a new real time measuring method of the ratio of sinusoidal signal power to noise power. The recursive estimation 
procedure was developed on the basis of maximum-likelihood (ML) method with use of the stochastic approximation technique. The performance of 
the algorithm was checked by means of numerical simulations, which revealed its high efficiency and low numerical load, what enables to use it in 
real time systems. 
 
Streszczenie. W artykule zaprezentowano nową metodę wyznaczania w czasie rzeczywistym stosunku sygnału do szumu w przypadku sygnałów 
harmonicznych. Rekursywna procedura estymacji została opracowana przy wykorzystaniu estymatora największej wiarygodności oraz metody 
aproksymacji stochastycznej. Wyniki badań symulacyjnych potwierdziły wysoką efektywność algorytmu i niewielkie obciążenie obliczeniowe.  
 Pomiar w czasie rzeczywistym stosunku sygnału do szumu dla sygnałów harmonicznych. 
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Introduction 
Noise and disturbances which influence the 

transmission process in electronic and telecommunication 
systems may deteriorate performance of detection and 
decoding transmitted information [1, 2, 3]. It is especially 
troublesome in a case of weak signals on high level noise 
background and negligible for strong signals. As the relation 
between signal and noise levels is important to receiving 
process, the vast majority of detection methods explicitly or 
implicitly relay on information about relation of signal power 
to noise power called signal to noise ratio (SNR). The 
performance of the methods depend on the accuracy of 
information on SNR. Many techniques are based on a priori 
knowledge on SNR level. This idea is sufficient for 
stationary systems, where SNR assessed theoretically or 
measured initially is valid for all the time. However, 
in a case of non-stationary conditions, as for instance in 
case of emerge of electromagnetic disturbances [4], 
compatibility issues [5, 6], abrupt changes of transmission 
channel properties [3, 7], signal fluctuations and even 
intended jamming, obtaining reliable SNR information in 
real time may pose a challenge. Estimation of the 
parameter is mainly done with use of two methods: the 
method of moments (MM) [8, 9] or maximum likelihood (ML) 
[10,11]. The second approach is characterised by faster 
convergence time than the first one, but requires higher 
calculation load. However, algorithms intended for use in 
real time systems should have low numerical burden. 

The scope of the paper is to present reliable method 
allowing measuring the ratio of sinusoidal signal power to 
noise power with low calculation load, which is dedicated to 
real time systems. The algorithm is based on ML technique 
with use of stochastic approximation. Its idea was 
presented by authors in [12] and is described in detail in 
sections II and III. In section IV results of simulation 
investigations are presented. 
 
Carrier signal with noise in narrowband systems  

Electronic and telecommunication transmission systems 
are narrowband, so the noise on the output of the receiver 
is also narrowband. Two examples of harmonic signal with 
narrowband noise at level of SNR = 0 dB and SNR = 10 dB 
are presented in Fig. 1. The picture illustrates the problem 
mentioned in the introduction.  

It is known [1, 13] that in a case of narrowband 
receivers, the envelope of received sinusoidal carrier signal 
corrupted by Gaussian noise can be described by the Rice 

distribution. Examples of probability density functions w(x) 
of the envelope of sinusoidal signal with narrowband noise 
for different SNRs are presented in Fig. 2. 
 

 
Fig.1. An example of harmonic signal with narrowband noise at 
SNR = 10 dB (left), SNR = 0 dB (right) 
 

 
Fig.2. Probability density functions w(x) for the sinusoidal signal 
with narrowband noise for different SNRs 
 

As can be seen in Fig. 2, the properties of the probability 
density functions depend on SNR level. This feature can 
constitute the basis of assessing SNR value with using ML 
estimation.  

The probability density function (pdf) of the Rice 
distribution in its normalized form can be presented as (1): 
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where: x is measured signal envelope value,  )ax(I0  is 

modified zero order Bessel function. The a parameter has a 
sense of signal to noise ratio: 

(2) 

msU

a   

where  is standard deviation of the noise,  Ums denotes 
signal amplitude. 
 

SNR estimation algorithm 
Having such mathematical model, the issue of SNR 

estimation can be formulated as the problem of the 
parameter a estimation. The ML approach can be applied. 

For N independent measurements, the probability 
density function can be written as: 
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where N is a number of measurements, xk is k-th measured 
sample. 

The ML estimate is the solution [14] of the following log 
likelihood equation: 
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which leads to the following result: 
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where  E  is expected value due to xk and: 
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where )(I),(I 10   are the modified Bessel type I 

functions of 0 and 1 order. 
Direct use of the ML method may not be possible 

because in this case the ML equation has no analytical 
solution. However, it is possible to use the idea of 
stochastic approximation [15] and to perform the recursive 
estimation procedure. Thus, to solve (5), the stochastic 
approximation algorithm can be applied as follows: 
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The recursive solution is the following: 
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The block diagram of the implementation of the 
algorithm (9) is shown in Fig. 3. 

Finally, the estimated SNR value at time step k is 
calculated as: 
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Accuracy of parameter ak estimate and estimation 

process convergence rate depend on the parameter k . 

The optimal value kopt can be found by taking the 
criterion of the minimum estimation error at every 
measurement step. 

 
Fig.3. Block diagram of the proposed algorithm implementation 
 

If we look for solution in a form of linear estimator, then 
the equation (8) becomes: 
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where k  is discrete stochastic process with parameters: 

0][E k  , 1]var[ k  , while: 
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where K and 2
  can be found on the basis of (1). 

Let's consider two cases: big and small value of a (high 
and low level of SNR). 

Assuming 1a   and using the Bessel approximation 
for big value arguments, we obtain: 
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and finally: 
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where 2
0  is the a priori value of variance of the measured 

parameter. 
In case of a<1 the optimal value kopt  cannot be directly 

found, since the values of K and   from (11) are functions 

of the unknown measured parameter: 
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Therefore for small 1a   the parameter kopt  can be 

obtained using (12). As a result, estimates in this case do 
not have asymptotic efficiency (they are not optimal), but for 

1a   (which is the case for most measurements) the k  in 

form of (12) has asymptotic efficiency, whereas: 
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where: I denotes the following information on probability 
density function: 
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Improvements of numerical efficiency 
Block diagram of the proposed algorithm 

implementation, which is presented in Fig. 3, shows that the 
estimator has simple and easy to implement structure. It 
requires few numerical calculations except realisation of 

)xa(I/)xa(I k0k1   blocks, where value of two Bessel 

functions should be calculated every time step k. However, 
this part of the system is actually a nonlinear block whose 
characteristics is shown in Fig. 4. Its value can be 
precalculated and placed in look-up table. For short tables, 
linear interpolation should be used. Our simulation studies 
have shown that this approach does not show noticeable 
differences with respect to analytical calculations. 

 
Fig.4. Nonlinear block I1(x)/I0(x) 
 

The final the structure of the proposed estimator is 
presented in Fig. 5. 

 

  
Fig.5. Block diagram of the algorithm implementation with use of 
nonlinear block 
 

Simulation results 
The performance of the proposed method was 

investigated in simulations with use of Monte Carlo 
approach with N=100 runs performed in Matlab 
environment. The results presented below were carried out 
for bandpass system with central frequency fc=10kHz and 
bandwidth B=1kHz. The signal under the test was 
comprised of sinusoidal signal with additive Gaussian noise. 
The frequency of the signal was fo=10kHz and phase was 
randomly drawn from range <0, 2) rad for each 
simulation run. The noise was simulated as zero mean 
Gaussian process with variance adequate to assumed 
SNR. Frequency of sampling was set as fs=100kHz. 

In Fig. 6 and Fig. 8 examples of SNR estimation process 
with use of proposed method is shown. Figures present 
results for two cases: SNR=10 dB and SNR=0 dB. 

Fig. 7 and Fig. 9 present root mean square error 
(RMSE) of SNR estimation. In the pictures the performance 
of the proposed algorithm is compared to RMSE of the MM. 
The realisation of the moment fit is based on determination 
of Rice distribution parameters  by adjusting two moments 
(mean, variance) with use of Nelder-Mead simplex 
optimization technique. The moment fit estimation is started 
after completing N=10 samples and is regularly redone 
after acquisition of each new signal measurement. In Fig. 7 
and Fig. 9 results for two SNR levels are shown: SNR=10 
dB and SNR=0 dB 

 
Fig.6. An example of SNR estimation process with use of the 
proposed method (SNR=10 dB) 

 
Fig.7. Comparison of the RMSE of SNR estimation with use of 
proposed method and MM fit (SNR=10 dB) 
 

 
Fig.8. An example of SNR estimation process with use of the 
proposed method (SNR=0 dB) 
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Fig.9. Comparison of the RMSE of SNR estimation with use of 
proposed method and MM fit  (SNR=0 dB) 
 

Fig. 10 presents relative RMS error in steady state 
conditions (k>500) as a function of the SNR level.  
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Fig.10. RMSE related to SNR value for various SNR levels 
 

As can be seen from Fig. 6 - Fig. 10, the proposed 
algorithm reveals good performance. The estimated value 
reaches true value of SNR in quite short time and has small 
RMS error. The proposed method reveals better 
performance than widely used MM both in RMS error and 
much lower calculation burden. 

 
Conclusions 

The paper presents a new suboptimal estimation 
method allowing measuring the ratio of sinusoidal signal 
power to noise power. The proposed algorithm is derived on 
the basis of maximum likelihood technique with use of 
stochastic approximation to obtain solution. The outcoming 
result has a form of recursive estimation procedure. The 
simulation results have revealed a high efficiency of the 
proposed algorithm and low numerical burden, which 
designates the method to real time systems. 
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