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Discrete wavelet transformation in spectral analysis of vibration 
processes at hydropower units 

 
 

Abstract. The paper presents application of wavelet transform in vibration diagnostics of hydropower units. It lies in the fact that, in view of a 
considerable nonstationarity of vibroacoustic signals, the spectral analysis thereof comprises discrete wavelet transformation so that spectral 
information both in frequency and time domain could be obtained and applied for hydropower unit diagnosis. 
 
Streszczenie. Artykuł prezentuje zastosowanie transformaty falkowej do wibracyjnej diagnostyki hydrogeneratorów. Biorąc pod uwagę 
niestacjonarny charakter sygnałów wibroakustycznych i dokonując analizy za pomocą dyskretnej transformaty falkowej uzyskuje się informację 
potrzebne do diagnostyki hydrogeneratora (Dyskretna transformata falkowej w analizie spektralnej zjawisk wibracyjnych hydrogeneratorów). 
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Introduction 
The future of the world’s economics is closely related to 

accelerated development of power sources, hydropower 
industry being one of them. At the same time, hydraulic 
power plants (HPP), especially high-power ones, may in 
case of an emergency represent a significant hazard to 
environment and people, as it was the case with 
Nurekskaya HPP (Tajikistan, 1983), Sayano-Shushenskaya 
HPP (Russia, 2009), as well as in Switzerland (2000), USA 
(2005), India (2009, 2013) etc.  

That is why timely diagnostics and particularly 
forecasting of hydropower units’ defects are of great 
significance. Vibration diagnostics is one of the most 
widespread diagnostics types, since vibration signal’s 
almost instantaneous reaction to change in equipment 
condition is a very important property in case o an 
emergency, when the speed of diagnosis establishment and 
decision making is a determinant factor. 

Vibration diagnostics is a discipline that comprises 
theory and methods for arrangement of processes 
associated with machine identification and assessment of 
its technical condition that is based on the data contained in 
vibroacoustic signal. Vibroacoustic signal is the main 
physical carrier of information about condition of elements 
of operating equipment during vibration diagnostics such 
signal being a collective concept that contains information 
on oscillating processes (vibrational, hydro- or gas-dynamic 
etc.) and respective mechanism’s acoustic noise in the 
environment.  

The main approaches of information analysis for 
diagnostics and forecasting of hydropower unit’s defect are: 
power analysis - based on measurement of controlled 
signal’s amplitude (or power); frequency (spectral) analysis; 
phase-time technology based on comparison of the form of 
signals measured at fixed time intervals. In many existing 
automated diagnostic systems, several of the foregoing 
technologies are used at the same time, though the 
overwhelming majority of systems are based on spectral 
analysis of vibration signals. 

 
Spectral analysis of vibration processes at hydropower 
units 

The essence of spectral technology of diagnostics lies in 
the fact that certain spectrum components frequently 
conform to certain factors giving rise to vibration and, when 
analyzing the amplitudes of these components, one can 

make conclusions relating to the degree of each such 
factor’s influence on vibration signal.  

The main weak point of many diagnostic systems lies in 
the fact that signal spectrum is obtained through 
conventional Fourier transformation, which may only have 
an adequate effect with stationary signals, while 
hydropower unit’s vibration signal is nonstationary. In such 
a case, conventional Fourier transformation is inadequate, 
and frequency-time transformations should be applied. 

Frequency-time transformations do essentially differ 
from frequency ones by the fact that physical Heisenberg 
uncertainty principle works in their respect, which principle 
in relation to this transformation type may be formulated as 
follows: at no fixed moment in time one can determine, 
which spectral components are contained in a signal. 

It follows from this principle that we can only determine 
the time intervals, during which a signal contains frequency 
bands. It in turn follows from the foregoing that, should the 
window size (i.e. time interval) be small, meaning that the 
spectrum’s time localization is high, the frequency band will 
be very diffused and vice versa, more precise determination 
of spectral component will require a large window. 

One of such transformations is represented by the so-
called short-time Fourier transformation (STFT), which is 
also called sometimes the weighted Fourier transformation 
[1, 2]. 

 
Wavelet transform 

Provided that mother wavelet is designated as  t , 
The direct continuous wavelet transformation (CWT) of 
signal f(t) with s scale parameter and  time displacement is 
defined as: 

(1)      dt
s
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where *  – the associated mother wavelet (with  t  
being a real function, * t   t  ). 

 sWf ,  domain is represented by the product of all 

possible combinations s and . Scale parameter s is in its 
essence a value inverse to frequency. Since it is contained 
in the denominator, s > 1 means stretching the signal, while 
s < 1 shrinking. CWT results in the so-called wavelet ratio 
matrix (WRM). 



 

66                                                                               PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 93 NR 3/2017 

The f(t) signal may be reproduced pursuant to WRM 
obtained using inverse CWT 

(2)     
2

2

1
,

1

s

dsd

s

t

s
sWf

C
tf

R

 





 

 
  

where C  denotes constant determined by the mother 

wavelet. 
At the same time, actual vibroacoustic signals cannot be 

represented in analytical form. They enter the system for 
further analysis in the form of a finite numeric group. In such 
cases, a direct discrete wavelet transformation (DWT) is 
applied. DWT results in a triangular wavelet ratio matrix, 
each successive row of which is by k times shorter than the 
previous one, i.e. row lengths are terms of geometrical 
progression, compression ratio k being its indicator. 

 Given that one element should be left in the last row, 
the length of the signal’s input vector should equal to kM, 
where M is a natural number. Such being the case DWT 
implementation results in wavelet ratio matrix of size:  

(3)   MkM 1 .  
DWT when k = 2 is used most frequently, but sometimes 

it may be advisable to use other whole (or even rational) 
compression coefficients. 

This allows increasing the speed of algorithms, though 
aggravates the definition of frequency-time signal 
transformation. The mathematical models and algorithms of 
discrete wavelet transformation are based on the 
mathematical apparatus of the so-called multiple-scale 
analysis [1, 2, 3]. 

The multiple-scale analysis is based on ONB comprising 
the two functions: scaling function  x   and mother (basic) 

wavelet  x  . 
At compression coefficient 2, scaling function must 

conform to the following formula: 

(4)       
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where h(N) – the coefficient vector that characterizes the 
scaling function unambiguously. 

This function ensures double zooming at each step. 
Based on  x   function, mother wavelet  x   is built using 

the formula: 
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where g(N) the coefficient vector that characterizes the 
mother wavelet unambiguously. Coefficient vector g(N) is 
determined as follows: 

(6)        iNhigNi i  111,0  

At compression coefficient 2, scaled and displaced scaling 
function and mother wavelet are written as: 

(7)     ixx j
j

ij  222
,  , 

(8)     ixx j
j

ij  222
,  . 

In order to implement DWT algorithm, the scaling 
function  x   and mother wavelet  x   are not used 

actually; they are entirely replaced by coefficient vectors 
h(N) and g(N). 

Technically, there are algorithms of building mother 
wavelets for arbitrary rational compression coefficient 
instead of 2, though this only compression coefficient 

allowed demonstrating that there is an algorithm, under 
which the smoothness of mother wavelet increases in a 
linear fashion with increase of its support. For example, at 
compression coefficient 3 this smoothness increases in a 
logarithmic fashion with increase in definition domain. At the 
same time, it sometimes may be advisable, for various 
reasons, to use wavelets wit other (particularly, fractional) 
compression coefficients. 

Algorithms for obtaining h(N) and g(N). vectors are in 
most cases complicated. Among them, the simplest ones 
are the algorithms for determination of Daubechies 
wavelets, such algorithms coming down to solution of 
algebraic equation systems [3, 4]. 

Let us consider the principles for building the required 
algebraic equation system and its solution by the example 
of determination of coefficient vector h(N) for mother 
Daubechies wavelet D8 (i.e. N = 8) at compression 
coefficient 2. It follows from the orthogonal property of 
scaling functions  

(9)       mdxmxx 0 . 

where 0m  – Kronecker delta, and (4) equation that 

    
i

mmihih 02  , and since N = 8, consequently 

m = 1, 2, 3, this expression is broken down into subsystem 
consisting of three equations:  
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The condition of mother wavelet’s orthogonality to 
polynomials up to L - 1 degree that determines its 
smoothness, 

(11)    01,0   dxxxLn n  

is confined to the relation: 
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or, allowing for (6) 
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L , then n 0,1,2, 3  and expression (13) is 

broken down into the subsystem composed of the four 
equations: 
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And finally, the condition of the scaling function 
standardization: 

(15)    1dxx , 

gives rise to another equation: 

(16)    
i

ih 2 . 

Solving the general equation system 
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(17b)
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Similarly, one can form the coefficient vectors h(N) for other 
mother Daubechies wavelets. 
 
Results of using the discrete wavelet transformation for 
vibration signal analysis at actual hydropower unit 

DWT input data are as follows: h(N) – the coefficient 
vector that characterizes the scaling function 
unambiguously; g(N) – the coefficient vector that 
characterizes the mother wavelet unambiguously; input 
signal vector f(N). k = 2 is the one most frequently used in 
DWT algorithms: with this, the length of each WRM row is 
twice as little as the previous one’s length. At the same 
time, when investigating complicated nonstationary signals, 
it would be advisable to consider the options of DWT 
algorithms with other compression coefficients, these not 
necessarily to be whole numbers.  

The choice of compression coefficient value is quite a 
complicated problem. The point is that, with k growing and 
given that the same input signal vector length the number of 
WRM rows reduces, which results in definition aggravation 
and reduction in WRM information content level, but with 
DWT speed growing, which may turn out to be a 
considerable advantage when it is necessary to ensure a 
fast signal diagnostics. Evidently, when it is necessary to 
ensure a more detailed diagnostics, one should choose 
lesser k values and agree to reduction of algorithmic speed. 
Since nonintegral k values cause certain difficulties 
algorithm development and implementation thereof, let us 
restrict ourselves to consideration of algorithm with whole 
natural k. 

As already mentioned above, DWT with compression 
coefficient k results in triangular wavelet ratio matrix, each 
successive row of which is by k times shorter than the 
previous one, i.e. row lengths are terms of geometrical 
progression, the indicator of which equals to k [5, 6, 7]. 

DWT algorithm contains the following steps: 
 the first row of intermediate calculations matrix  nja .  is 

formed: 

(18)      nfna ,0 . 

 then, subsequent rows of intermediate calculations 

matrix  nja .  are formed one-by-one: 

(19)      





1

0

,1,
N

i

iknjaihnja , 

as well as the rows of wavelet ratio matrix  njd .  
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This algorithm was implemented and used for analysis 
of vibration signals in hydropower units of Dnistrovska HPP-
2 (in the example set forth in the paper, DWT with 
compression coefficient 2 was taken). At the same time, 
provision was made for the specificity of measurement 
channels, from which the information on vibration signals 
comes, and namely: 

Numerical data come from the channel to the system for 
further processing in separate stacks sized up to 32768 
values. In this case, each stack conforms to a separate time 
interval, and it is inadmissible, for a correct analysis of one 

stack’s data, to use another stack’s data. Therefore, 
maximum data vector length that may be set in an applica-
tion should not exceed 32768, which corresponds to 215. 
 It follows from the foregoing expressions that, upon 
condition of a finite size of a numerical data set and 
inadmissibility of using another stack’s data, we can only 
use half of a stack in the algorithm, i.e. 16384 = 214. On the 
basis of (4), maximum WRM size with compression 
coefficient 2 may equal to 21314 = 819214. 

Set forth below in Fig. 1 is the diagram of WRM 
obtained for one time interval of vibration signal at a 
hydropower unit. This diagram is three-dimensional, with 
vertical axis containing WRM values and the horizontal one 
– time values, and located in the deep of the diagram are 
WRM rows corresponding to DWT scale ratios (i.e. 
frequency bands). The bands are arranged in such a way 
that low frequency bands are located in the diagram’s deep, 
approaching to the viewer with frequency growth. The width 
of each frequency band, in accordance with Heisenberg 
principle, is reducing with the increase in time interval 
length that is why low frequency bands are quite narrow, 
which ensures a high definition of DWT. For better 
visualization of WRM diagram, the width of each frequency 
band is depicted at a logarithmic scale. 

 
Fig.1. Wavelet ratio matrix diagram 
 

Frequency identification of scale coefficient of discrete 
wavelet transformation 

It is common knowledge that DWT results in WRM, the 
diagram of which is built in “time–scale coefficient” 
coordinates rather than in “time–frequency” coordinates. 

 That is why, to ensure the opportunity of diagnosing the 
defects of hydropower unit, one should first of all determine, 
which frequency band conforms to each of scale 
coefficients (i.e. to each WRM row) [9]. Recall that WRM is 
a triangular matrix, in which the length of each matrix row 
typically reduces exponentially. The progression’s exponent 
is compression coefficient k.  

The number of wavelet ratios naturally represents the 
scale coefficient of a certain WRM row. It is evident that, 
given a whole compression coefficient k for M rows as well, 
the scale coefficient of the last WRM row equals to 1, the 
one of the second-to-last row – to k, the one of the first row 
kM-1. The length of the input data vector in this case (based 
on DWT algorithm) equals to kM. 

Since WRM sets the frequency-time spectrum of 
vibroacoustic signal, the row’s scale coefficient will 
essentially equal to the number of frequency intervals, into 
which the input signal is broken down. Hence, each 
subsequent WRM row has the time interval length by k 
times longer than the same of previous one, and in 
accordance with Heisenberg uncertainty principle, the width 
of each subsequent WRM row (frequency band width) is by 
k times lesser than the same of the previous one. 
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Let us mark the scale coefficient of the ith row as mi (for 
the sake of convenience, let us number the rows, beginning 
from the last one). Then: 

(21)  1 i
i km , 

with the frequency band width of ith row to be directly 
proportionate to mi. 

Let us now determine the frequency range F  obtained 
as a result of DWT of vibroacoustic signal’s frequency-time 
spectrum. Assume that vibration signal’s discretization 
interval (being one of parameters of the vibration channel 
being measured) equals to дF . According to Shannon-

Kotelnikov theorem, 

(22)  
2
дFF  . 

It is evident that frequency range F  corresponds to the 
sum of all scale coefficients mi, i.e. being the total of 
geometrical progression Sm elements. Thus, we may write: 
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It follows from the foregoing that the frequency band 
width of the ith row is fi , which conforms to scale 

coefficient mi, may be obtained using the formula: 
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Naturally, WRM row with one wavelet ratio conforms to 
the narrowest frequency band, which begins from 0. 

It is apparent from (24) expression that frequency 
bandwidth depends on discretization frequency, compre-
ssion coefficient and on the length of input vibration signal 
stack. The foregoing algorithm was implemented in 
Microsoft Excel environment with the following input data: 
discretization interval of measurement channels equals to 
913.92 Hz.; for compression coefficient 2, maximum 
possible input signal vector length is assumed as kM = 
16382, M = 14. Microsoft Excel spreadsheet is shown in 
Figure 2 below. 

 
Fig.2. Frequency bands of vibration signal’s amplitude-frequency-
time spectrum 

 
Analyzing the results obtained it can be noticed that it is 

common for the existing vibration diagnostics practice to 
call vibration in the range lower than rotor spinning 
frequency a low-frequency one, the vibration conforming to 
rotor spinning frequency up to its 20th harmonic – a 
medium-frequency one, and if higher – a high-frequency 
one. 

It is known that rotor spinning frequency at hydropower 
units of Dnistrovska HPP-2 equals to 1.785 Hz. Hence, 
frequency bands from the first to the sixth ones will 
approximately cover the low-frequency range, the frequency 
bands from the seventh to the tenth contained in the 
medium-frequency range, with the eleventh band covering 
the end of medium-frequency and the start of high-
frequency range, with frequency bands from the twelfth to 

the fourteenth ones wholly belonging to the high-frequency 
range. 

 
Conclusions 

Application of wavelet transformation for spectral 
analysis of vibration signals allows obtaining information of 
vibration signal both in time and frequency domains with 
variable window width that ensures proper definition of 
spectral characteristics. 

When choosing the compression coefficient value one 
should note that its increase results (with the same input 
signal vector length) in reduction in the number of WRM 
rows, definition aggravation and reduction of WRM 
information content level, however DWT speed increases in 
this case, which may turn out to be a considerable 
advantage where there is a need to ensure a fast signal 
diagnostics. It is evident that, in case of the need to ensure 
a more detailed diagnostics, one should choose lesser 
compression coefficient values and agree to reduction in 
algorithm speed. 

Furthermore, it is important to choose a mother wavelet 
optimal in size, since with increase in coefficient vector h(N) 
order,  x   function density grows, enabling the improve-

ement of DWT quality. At the same time resulting in 
reduction in the speed of the application that has to analyze 
the vibration signal. 
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