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Faults detection in PMSM drive using Artificial Neural Network 
 
 

Abstract. In this paper, simulation research results of PMSM drive with open phase fault detection are presented. Proposed fault detection system is 
implemented using two artificial neural networks. One of them is neural model of healthy PMSM and another one generates diagnostic signals. 
When the fault occurs, the amplitude of current residuals increases and evaluation system returns diagnosis. In proposed system detection time is 
about 1 ms. Moreover, diagnosis does not depend on load state. 
 
Streszczenie. Artykuł przedstawia wyniki badań symulacyjnych napędu PMSM z detekcją przerwy fazy. Proponowany system detekcji uszkodzeń 
zaimplementowano z użyciem dwóch sztucznych sieci neuronowych. Jedna z nich pełni rolę modelu neuronowego sprawnego PMSM, natomiast 
druga generuje sygnały diagnostyczne. W przypadku wystąpienia uszkodzenia amplituda residuów prądów wzrasta, a system ewaluacji zwraca 
diagnozę. Czas detekcji w przedstawionym układzie jest rzędu 1 ms. Ponadto działanie systemu nie zależy od stanu obciążenia (Detekcja 
uszkodzeń w napędzie z PMSM przy użyciu Sztucznej Sieci Neuronowej). 
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Introduction 
 The permanent magnet synchronous motors (PMSM) 
are becoming increasingly popular in industry due to their 
high power density, low inertia and high efficiency. Thanks 
to their excellent dynamic performance, they are widely 
used in robots, machine tool, winders and similar systems 
that require precise speed and torque control. Nowadays, 
electrical drives often work in human life-critical systems, 
where high reliability is required [1]. In these applications 
the traditional control algorithms do not provide a sufficient 
safety, so fault tolerant control (FTC) is commonly used. 
FTC algorithms require information about type and location 
of fault [2], therefore the fault detection and diagnosis 
systems are necessary. There are many methods of fault 
detection and identification. They can be divided into signal 
processing based and  model-based categories. First of 
them uses measured signals analysis methods such as 
spectral analysis [3] or wavelet transform [4]. In general, 
they only uses output signals of drive, but no input signals, 
so influence of input on output may be ignored [5].  Model-
based methods use information about structure and 
parameters of dynamic model of plant. These include state 
estimation methods, for example observers or Extended 
Kalman Filter [6]. Moreover, model parameters estimation 
methods like recursive last square algorithm can be used 
[7]. Model-based methods generate residuals, by estimating 
output signals (or parameters of the plant) and computing 
estimation error vector [8]. Next the residual evaluation 
system generates diagnosis. Fig. 1 presents the block 
diagram of model-based method of fault detection. Symbols 
shown in Fig. 1 are u – plant inputs, y – plant outputs, z – 
disturbance, f – fault, and r – generated residuals. The main 
disadvantage of mentioned methods is the need for a 
reliable model [5]. In this paper, fault detection method 
based on model is connected with computational 
intelligence methods. Presented in this paper the residual 
generator contains neural model of PMSM. Moreover, the 
residual evaluation system is also realized using the 
Artificial Neural Network (ANN). 
 
Mathematical model and control structure 
Dynamic  model of PMSM used in this paper is given as 
follows: 
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Fig.1. Block diagram of model-based fault detection system 
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where id, iq ,Ld, Lq, vd, vq – currents, inductances and voltages 
in d-q axes, R – winding resistance, p – pole pairs, ωr – 
angular speed of rotor, λ -  permanent magnets flux linkage, 
Te – electromagnetic torque, J – moment of inertia, F – 
viscous friction coefficient, Tm – load torque, ϴ - rotor 
angular position.  
 Used control algorithm was Field Oriented Control 
(FOC) [9]. Clarke and Park transforms were used for 3 
phase non-rotating frame into two coordinate rotating  
reference frame conversions. PI controllers were used in 
speed and currents control loops. Transistors gate pulses 
were generated using Space Vector Pulse Width 
Modulation (SVPWM) [9]. The block diagram of control 
structure is shown in Fig. 2. 
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Fig.2. Block diagram of Field Oriented Control with Space Vector 
Pulse Width Modulation 
 
Fault detection method 
 The main blocks of the system are neural model of 
PMSM and diagnostic module. The inputs of the both 
networks are phase currents, phase voltages, speed and 
the motor shaft position. In addition, the current residuals 
vector is given to the input of the diagnostic block, which 
returns the diagnosis. The output of the system is 
diagnostic signal which indicates open phase fault 
occurrence. The block diagram of the system is presented 
in Fig. 3. 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.3. Block diagram of neural fault detection system 

 
 In the figure,   ϴ  is  the position, and ω is the speed. 
For increase of residual signal magnitude during open 
phase fault, in place of measured currents the weighted 
arithmetic mean of estimated and measured currents was 
applied. Used coefficients was experimentally determined 
and was 0.8 for estimated and 0.2 for measured values. 
The tapped delay line (TDL), delays voltages, speed and 
position samples by 0, 1 and 2 steps. It also delays currents 
by 1 and 2 steps. In practical applications the phase 
voltages are not measured. To avoid implementation of 
extra sensors the reference voltages can be used. In that 
approach system processes variables that are already used 
by vector control algorithm. 
 Signals acquired from the several simulations of healthy 
motor drive, working at various speeds and loads were 
used for training the neural model. Residual evaluation 
system was trained on data obtained during open phase 
fault simulations. A fault trigger signals were used as a 
target data. Neural model consists two-layer feed-forward 
ANN, with 6 neurons in the first layer, and 3 neurons in 
output layer. Activation functions are hyperbolic tangent in 
hidden layer, and linear in output layer. Residual evaluation 
system is three-layer perceptron. The first hidden layer has 
14 and the second 7 neurons. Activation functions are: 

linear in the first layer and hyperbolic tangent in the other 
ones. Both ANNs were trained with the Levenberg-
Marquardt algorithm [10,11] with Bayesian regularization 
using structures shown in Fig. 4.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.4. Artificial neural network training schemes. a) neural model, b) 
residual evaluation system 
 
Simulation results 
The simulation studies of presented system were performed 
in MATLAB/Simulink environment. PM machine and power 
converter models were implemented using 
SimPowerSystems toolbox. The PMSM drive model 
operates using vector control, with outer loop of speed 
control, and inner loop of current control. The motor is fed 
by a voltage source inverter. It was necessary to create 
power converter in such a way that the open phase fault 
could be simulated. There was logical AND operation 
applied on transistors gate pulse signals, to simulate open 
circuit fault by holding selected ones at logical zero. The 
ANNs were implemented and trained using MATLAB Neural 
Networks Toolbox. Fundamental sample time used in 
simulation was 1 μs for motor and power converter models, 
and 100 μs for other blocks. The PWM carrier frequency 
was equal 10 kHz, and used “dead time” was equal 4 μs. 
Some sample simulation results of fault detection system 
behavior are shown in Fig. 5. and Fig. 6.  
 The waveforms in Fig. 5a shows phase currents during 
motor startup, which is working at speed 250 rad/s. In 
addition, at time 0.04 s, a stepwise load was attached, from 
zero to nominal value. At time 0.06 s open phase A fault is 
occurred. It is shown in Fig. 5b that fault occurrence causes 
residuals amplitude increase. This is because of differences 
between measured and estimated currents.  There are 
some peaks in residual evaluation system output signal, as 
presented in Fig. 6a. It is caused by inaccurate model of 
electric drive. To avoid a false-positive error the 10 point 
moving average filter was applied. Proposed filter was 
defined as: 
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Fig.5. Simulation results of proposed neural residual generator. a) 
phase currents, b) residuals 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.6. Simulation results of proposed open phase detection system. 
a)Residual evaluation system output, b) filtered output, c) diagnosis 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.7. Impact of the time-varying load torque on false-positive error. 
a) phase currents, b) torque, c) residual evaluation system output, 
d) diagnosis 

where ff – filter output signal , fraw – filter input signal, and N 
– number of points in average. The figure 6b presents 
filtered residual evaluation system output signal. Diagnosis 
is created by thresholding of filtered signal. 
 In the Fig. 7 the impact of the time-varying load torque 
on diagnosis is presented. After motor startup, drive is 
working at constant speed and load torque steps and ramps 
occur.  
 It can be seen, that peaks in residual evaluation system 
output signal has been filtered and diagnosis does not 
depend on load state. It is worth noting that fault detection 
system works properly from the very beginning of motor 
startup, so no detection disabling signals are required. 
Presented system can work as autonomous block in the 
motor drive. 
 Simulations at various speeds and angles has been 
done to examine the electrical angle of the fault occurrence 
impact on detection time. In table 1, there are presented the  
fault detection times in a case of various conditions for 
testing of the break in phase A.  
 
Table 1. Detection time at different electrical angle of open phase A 
fault occurrence and at various speeds 
              Speed 
               [rad/s] 
 
Electrical 
angle 

50 100 200 300 400 

0° 1.6 ms 1.0 ms 0.7 ms 0.7 ms 0.6 ms 
30° 0.4 ms 0.4 ms 0.4 ms 0.4 ms 0.6 ms 
60° 0.4 ms 0.5 ms 0.5 ms 0.5 ms 0.5 ms 
90° 0.5 ms 0.5 ms 0.5 ms 0.5 ms 0.4 ms 
120° 0.5 ms 0.5 ms 0.5 ms 0.4 ms 0.5 ms 
150° 0.5 ms 0.5 ms 0.5 ms 1.7 ms 1.3 ms 
180° 2.1 ms 1.2 ms 0.8 ms 0.7 ms 0.6 ms 
210° 0.4 ms 0.4 ms 0.4 ms 0.4 ms 0.5 ms 
240° 0.4 ms 0.4 ms 0.4 ms 0.4 ms 0.4 ms 
270° 0.4 ms 0.4 ms 0.4 ms 0.4 ms 0.4 ms 
300° 0.4 ms 0.4 ms 0.4 ms 0.4 ms 1.8 ms 
330° 0.4 ms 0.4 ms 0.4 ms 1.5 ms 1.2 ms 

 
In the most cases, detection time is less than 1 ms, except 
angles near 0° and 180° during phase A current zero 
crossing. Zero phase current caused by open phase fault 
cannot be distinguished from natural current zero crossing 
so fault detection is delayed. It is worth to add that angular 
velocity does not impact on detection time. 
 
Conclusions 
 In this paper, an open phase fault detection system has 
been introduced. Presented method was verified by 
simulation research and gave good results. Proposed 
detection system is fast – detection time is about 1 ms. 
Short time of fault detection allows to enable FTC algorithm 
before eventual drive damage, which may occur due to high 
torque pulsation during open phase state. Presented 
system processes variables which are already used by 
vector control algorithm, avoiding the use of extra sensors. 
Moreover, transient states of drive system and motor speed 
do not influence diagnosis. 
 
Appendix. Parameters of used Permanent Magnet Machine model 
Parameters of PMSM model Unit Value 
Stator resistance Ω 1.6 
Armature inductance mH 6.37 
Flux linkage of the PM V·s 0.185 
Moment of inertia kg·cm2 4,85 
Viscous damping M·m·s 1.4·10-3

Pole pairs - 2 
Sample time s 1·10-9 
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