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Abstract. In this paper, algorithms of the state estimation of dynamical systems, using different types of particle filters, have been presented. Three 
Particle Filter methods have been used: Bootstrap Filter, Auxiliary Particle Filter and Likelihood Particle Filter. These methods have been applied to 
two nonlinear objects, with quadratic measurement functions. The results have been additionally compared with the outcome from Kalman filters. 
Based on the obtained results (5 different quality indices) the estimation methods have been evaluated.  
 
Streszczenie. W niniejszej pracy zostały przedstawione algorytmy estymacji stanu układów dynamicznych za pomocą różnych rodzajów filtrów 
cząsteczkowych. Zaprezentowano trzy metody filtrów cząsteczkowych: algorytm Bootstrap, pomocniczy filtr cząsteczkowy i wiarygodny filtr 
cząsteczkowy. Metody te zastosowano dla dwóch obiektów nieliniowych o kwadratowych funkcjach pomiarowych. Z filtrami cząsteczkowymi zostały 
dodatkowo zestawione metody filtru Kalmana. Na podstawie uzyskanych wyników (5 różnych wskaźników jakości) metody estymacji zostały 
ocenione. (Porównanie filtrów cząsteczkowych, pomocniczego i wiarygodnego, do estymacji stanu systemów dynamicznych). 
 
Keywords: particle filters, state estimation, dynamical systems, Kalman filters, nonlinear plants. 
Słowa kluczowe: filtry cząsteczkowe, estymacja stanu, układy dynamiczne, filtry Kalmana, obiekty nieliniowe. 
 
 
 

Introduction 
State estimation is incredibly useful in practical 

applications and dynamically developing branch of the 
science. Estimation methods have broad applications in 
various fields of technical sciences, e.g. in power systems 
to estimate hard-measurable phasors [1-3], in electric drive 
to obtain easy measurable quantities: current and voltage 
and estimate velocity and position of the motor shaft [4], in 
analyzing UAVs moving (estimation of UAV position on the 
map) [5-6] as well as in mobile robots movement, to 
estimate position or linear velocity [7]. 

In 1993, Gordon, Salmond and Smith proposed the first 
Particle Filter (PF) algorithm [8]. It was not widely used 
despite its effectiveness, due to the high computational 
complexity. However, in further years the computing power 
of processors has significantly increased, so today it is easy 
to apply the PF algorithm and its more computationally 
complex modifications, even in online estimation. 
Nowadays, dynamic estimation methods are still being 
developed, mainly modifications of existing ones, such as 
the Remaining Useful Life Particle Filter (RULPF) [9]. 

In this paper, three Particle Filters have been explained 
and compared. The authors of the article have focused on 
particle filters, because they are designed to estimate 
noises of any probability density function and they work well 
with nonlinear objects. The simulations results have been 
compared with two variants of the Kalman filter (Extended 
and Unscented), of which explanations one can found in 
[10, 11]. Despite the fact that the original Kalman filter did 
not apply Bayes’ rule [12], it has been proven that Kalman’s 
equations can be derived from Recursive Bayessian Filter 
(see (2) in the section Particle filters algorithms). Times of 
computing also have been compared. 

In the first section, formulation of a problem has been 
described. The second section contains description of 
particle filters algorithms. Models of used objects and 
quality indices have been described in Sections 3 and 4, 
respectively. Section 6 contains the results of the 
simulations. Conclusions and final comments one can find 
in Section 7. 

 

Formulation of the problem 
The discrete system described in state space is 

considered by 
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where: x(k) – state vector in k-th time step, u(k) – input vector, 
y(k) – measurement vector, v(k) – process noise vector, n(k) – 
measurement noise vector, f() and h() – vectors of 
transition and measurement functions respectively. 

The task of the estimation is to reconstruct values of the 
state variables based on the available measurement 
outputs and known inputs of the system. 

 
Particle filter algorithms 
1) Generic Particle Filter 

This method (and all next too) was designed for 
applying to nonlinear objects (1). In the literature it occurs 
also as Sampling Importance Resampling (SIR). The 
principle of the Particle Filter operation is based on the 
Bayes filter [13], described by equation 
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where: Y(k) – set of measurements from all k time steps, 

p(x(k)|Y(k)) – posterior Probability Density Function (PDF), 
p(y(k)|x(k)) – likelihood, p(x(k)|Y(k-1)) – prior PDF, p(y(k)|Y(k)) – 
evidence ratio. 

In the PF algorithm PDF is represented by a set of 
particles. Each particle consists of a state vector and the 
weight value. So i-th particle can be described as a pair 
{xi, qi}. If the number of particles is high enough, posterior 
PDF may contain the same information as the continuous 
PDF function.  
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where: δ() – Dirac delta, Np  – number of particles. 
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Algorithm 1: SIR Particle Filter 
1. Initialization. Draw initial values of particles 

xi,(0)  p(x(0)), set k=1. 
2. Prediction. Draw Np new particles based on 

transition model xi,(k)  p(x(k)|xi,(k-1), y(k)). 
3. Update. Compute particle weights based on the 

measurement model: 
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4. Normalization. Scale the weights in such a way that 
their sum be equal to 1. 

5. Calculate the effective sample size 

(5) 
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If Neff < NT, (where NT, is a critical value, mostly NT
 = 

Np/2), go to step 6, otherwise go to step 7. 
6. Resampling. Described at the end of the Section. 
7. End of the iteration. Calculate the estimate for k-th 

time step, update k = k + 1, go to step 2. 
If the resampling stage is executed unconditionally, in 

each time step, one can skip the multiplication by qi,(k-1) in 
the update model for weights calculation (because after the 
resampling stage the weights are equal to Np

-1). 
The main disadvantage of particle filters is time needed 

for calculations, because PFs algorithms are strongly 
computationally complex. The number of calculations grow 
exponentially with the number of state variables. However, 
PF algorithms are optimal for nonlinear and non-Gaussian 
plants (due to Bayessian based solution). 

More about particle filters one can find in [14, 15]. 
 

2) Bootstrap Filter 
The Bootstrap Filter (BF) was proposed in [8] by 

Gordon, Salmond and Smith and assumes drawing 
particles in prediction step from the transition model xi,(k)  

p(x(k)|xi,(k-1)). It is also assumed that the resampling is 
executed in every iteration. 

 
Algorithm 2: Bootstrap Filter 
1. Initialization. Draw initial values of particles 

xi,(0)p(x(0)), set k=1. 
2. Prediction. Draw Np new particles from transition 

model xi,(k)p(x(k)|xi,(k-1)). 
3. Update. Draw weights of the particles from 

measurement model 

(6)  )(,)()(, | kikki pq xy . 
4. Normalization. Scale the weights in such a way 

that their sum be equal to 1. 
5. Resampling. Described at the end of the Section. 
6. End of the iteration. Calculate the estimate of k-th 

time step, actualize time step k = k + 1, go to step 2. 
In BF algorithm the particles are drawn in the prediction 

stage from the transition model, and in the update step 
the denominator p(x(k)|xi,(k-1),y(k)) from (4) shortens the 
expression p(x(k)|xi,(k-1)) from the numerator. This approach is 
useful (regarding the SIR algorithm) especially when the 
transition model is given by function, from which particles 
drawing is not very problematic. Due to unconditionally 
resampling step, one do not have to calculate (5) in every 
time step. 

BF algorithm is often used due to its easy 
implementation and satisfactory results of estimation. 
 
 
 

3) Auxiliary Particle Filter 
The Auxiliary Particle Filter (APF) algorithm was 

proposed by Pitt and Shephart in 1999 [16]. It is the 
modification of BF algorithm by improving the method of 
selecting the position of the particles in each simulation 
step. The algorithm assumes additionally drawing the 
auxiliary index, which is drawn for every particle and it has 
an influence on the selection of the particles during 
prediction and on weights calculation. Again it is assumed, 
that the resampling is executed in all iterations. 

 
Algorithm 3: Auxiliary Particle Filter 
1. Draw Np particles from initial PDF xi,(0)  p(x(0)), set 

initial weights qi,(0) = Np
-1 and initial time step k = 1. 

2. Draw auxiliary values µi,(k)p(x(k)|xi,(k-1)) 
and calculate their weights according to 
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3. Normalization of the weights q*
1...Np,(k). 

4. Draw Np auxiliary indices aj, PDF for drawing is 
given by set of pairs: {xi,(k-1), q*

i,(k)} (probability that 
aj = b will be drawn is equal to qb,(k)). 

5. Draw samples from transition model using auxiliary 
indices: x j,(k)  p(x(k)|xaj,(k-1)). 

6. Calculate weights of the particles using the 
expression 
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7. Normalization. Scale the weights in such a way 
that their sum be equal to 1. 

8. Resampling. Described at the end of the Section. 
9. End of the iteration. Calculate the estimation of k-th 

time step, update k=k+1, go to step 2. 
In the prediction step, one do not consider only the 

existing particle, but also the latest observation of particle. 
The APF algorithm introduces an auxiliary variable and it 
makes the PDF more reasonable and more close to the real 
situation. 

 
4) Likelihood Particle Filter 

The Likelihood Particle Filter (LPF) algorithm was 
proposed in [14]. It differs from other particle filters 
algorithms because here the measurement model is used 
for particles drawing and the transition model – for weights 
calculation. This algorithm was prepared specially for 
selected object (Ob1 from the next section) with quadratic 
measurement function and it assumes the auxiliary variable 
s(k) = (x(k))2 addition. Again it was assumed that the 
resampling is executed in all iteration steps. 

 
Algorithm 4: Likelihood Particle Filter 
1. Draw Np values of particles from initial PDF 

xi,(0)  p(x(0)), set qi,(0) = Np
-1, set time step k = 1. 

2. Draw particles from measurement model 
si,(k)  p(y(k)|s(k)). The drawing for each particle 
should be repeated until si,(k) ≥ 0. 

3. Draw for each particle u  U[0,1]. If u > 0.5, then xi,(k) 

= √si,(k), otherwise xi,(k) = -√si,(k). 
4. Draw weights of the particles using the transition 

model: 
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5. Normalization. Scale the weights in such a way 
that their sum be equal to 1. 

6. Resampling. Described at the end of the Section. 
7. End of the iteration. Calculate the k-th time step 

estimate, update k=k+1, go to step 2. 
The PDF, which particles are drawing from, is not 

intended to be generically applicable, because it does not 
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work so good in objects with not-square measurement 
model. One can see that the choice of importance density 
can influence the estimation quality of the algorithm. 

 
5) Resampling 

Resampling is the re-drawing of Np particles, but only 
from the existing ones. Probability of each particle drawing 
is equal to its normalized weight. In the presented research 
systematic resampling was applied. 

 
Algorithm 5: Resampling 
1. Set the values j = 1, sumQ = q1,(k), i = 1. 
2. Draw u value from U[0,1]. 
3. Update j = j + 1, sumQ = sumQ + qj,(k), while sumQ < u. 
4. Every i-th particle after resampling one can 

described by a set of pairs: {xi,(k), Np
-1}. 

5. Update i = i + 1, u = u + Np
-1, go to step 3. 

There are many different resampling algorithms, and the 
description of over twenty of them one can find in [17]. 

 
Examined objects 

The system Ob1 is a plant without the input signal (is 
autonomous), so the change of the state is only due to the 
presence of a process noise v(k). It is used very often to 
particle filters examination [8, 14]. According to publication 
[18], this object was firstly proposed in 1978 by Netto, 
Gimeno and Mendes. The initial value is set to x(0)=0.1, 
noises parameters are v(k)  N(0; 10), n(k)  N(0; 1). System 
Ob1 is given by equations 
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The second system Ob2 (MIMO 2x2) has been 
proposed by the authors in order to note the selected 
properties of estimation and quality indices. The initial value 
is set to x(0)=[0.1; 0.1]T, noises parameters are v1

(k)  N(0; 
0.1), v2

(k)  N(0; 100), n1
(k)  N(0; 0.1), n2

(k)  N(0; 100). There 
are input signals in this object for which uniform noise from 
the interval <-1; 1> is used. System Ob2 is given by 
equations 

(Ob2) 
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Quality indices 

Five different quality indices (given by equations (10-14) 
with MSEi and RMSEi defined by (15) and (16), respectively) 
were taken into account during the studies: 
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where: k – time step; M – number of simulation steps; Nx – 
number of state variables; Ny – number of state 
measurements; yi

(k) is a measurement, hat means that these 
values are estimated, and sign + indicates true values. 

 
The index giving by (10) represents absolute error, 

indices (11-12) – absolute errors scaled by values of noise 
variances, whereas (13-14) are the relative errors. First two 
indices (10-11) show state variables fitness and the last 
three show measurement compliance. Additionally, Jx and Jy 
are the residual functions of state variables and 
measurements, respectively 
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One more quality index given by  
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one can find in literature [19] – relative error of state 
variables. However, in previous research there has been 
shown that this index is not good for objects which state 
value is nearly or equal to zero, because the appearance of 
zero in denominator causes rapid growth of the index value 
[20]. 

Proposed indices are from [20-23] or have been 
suggested by the authors by modifying them.  
 
Simulation results 

For each method and object, simulations with M = 1000 
time steps have been performed. In order to decrement 
standard deviations of the quality indices, each simulation 
has been repeated 1000 times (but with new signals every 
time). All simulations with particle filters were made with 
500 particles. Standard deviations of the means were 
calculated based on the theory from [24], which says that 
for Gaussian PDF the variance from mean value is m times 
smaller than variance from m-elemented sample. 

Values of quality indices for each method and object 
have been presented in Fig. 1-2. Standard deviations with 
99.7% probability (based on 68-95-99.7 rule from [24]) are 
presented on the graphs. 

 
 
Fig.1. Comparison of quality indices for Ob1 
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Fig.2. Comparison of quality indices for Ob2 
 

Conclusions 
Standard deviations on bars in Fig. 1 and Fig. 2 are 

relatively low, for most bars invisible. Therefore, the 
evaluation of quality (the order from the best to the worst 
filter) is justified. In Fig. 2, most of the quality indices for 
KFs are scaled because these methods had far worse 
results than the particle filters (by the height of these bars, 
the remaining charts could became invisible). All average 
values of quality indices are listed in Table 1 

Based on the simulation results, one can easily see that 
for examined objects particle filters give definitely better 
results than Kalman filters. The best action, regarding the 
state variables tracking (according to (10-11) indices), is 
provided by BF and APF algorithms for both Ob1 and Ob2. 
In all cases one can see minimal advantage of Bootstrap 
algorithm. The worst is the EKF algorithm for both systems 
and all quality indices. High standard deviation of Jy index is 
caused by mismatch of the real and estimated state 
variables, what affects the divergence between real and 
estimated output values too. The best adjustment of 
measurement values (indices (12-14)) is provided by LPF 
algorithm, both BF and APF algorithms turned out to be 
somewhat worse. The bad results of KF algorithms are 
caused by high nonlinear transition and measurement 
models of used plants and also by relatively high number of 
particles in PF algorithms. 

LPF algorithm can be used only for the selected objects 
type, so in the article only objects with square measurement 
functions were used. It does not produce the best results in 
the estimation of state variables (aRMSE and Jx indices), 
because the square of the state variable value is drawn, 
and then the sign of that variable is selected randomly. 
However, in the measurement match (the choice of such 
state variables to estimate the object's output as close as 
possible to the real values), this algorithm provides the best 
estimation (state variables are also best suited here, but 
only for absolute value). Therefore, in the case where only 
output signals need to be estimated and this outputs are 
square functions of state variables, it is best to use the LPF 
algorithm. 

In the case of Ob2, one can see a major defect of 
aRMSE. As has already been said, this index represents an 
absolute error and is not rescaled in any way. Therefore, 
the RMSE2, derived from the state variable x2 which has a 
higher noise variance than x1, is significantly higher than 
RMSE1. This results in a much greater impact of the second 
component on the total aRMSE value. In other indices, this 
problem is resolved by scaling them by the value of the 
noise variances (11-12) or by entering a relative error (13-
14). In order to presented results for 1000 simulations of 
Extended Kalman Filter on object Ob2, the components of 
values of selected quality indices were collected. The 
components of the aRMSE index were: RMSE = [0.4393; 
56.8948], while Jx = [1.9354; 32.6845]. It is therefore apparent 
that in the case of error scaling by the value of noise 
variance (11) the differences between the components, with 
large differences in noise variances, are less pronounced. 

The characteristic quality index is y2. It has no division 
into components (sums up in one step after all 
measurements) and its value is similar to value of y1, both 
of the indices show the ratio of estimation errors to the 
measurements errors. For one-dimensional objects these 
indices have exactly the same values. For a 
multidimensional system Ob2, index y2 is lower (from 3.2% 
to 28.1%) than y1. It is caused by the division by one high 
value, instead of few lower. Large difference between y1 
and y2 for UKF show that one of the outputs is much worse 
estimated than the second one. However, both indices 
generally show the same information, hence in the future, 
authors will probably limit the number of used quality 
indices. 

Simulations times are shown in the Table 2. It is easy to 
see that the shortest computation time is provided by the 
Extended Kalman Filter method, since there are only matrix 
calculations. A little longer time is needed for the UKF 
method, due to the additional two stages of the algorithm 
(unscented transformation and selection of sigma points). 
The most computationally complex are particle filter 
algorithms, since particle drawings and weight calculations 
have to be repeated at each time step Np times. Reducing 
Np may shorten the calculation time, but at the cost of the 
worse estimation quality. The longest computation time 
takes APF algorithm, because the indices ai and the 
auxiliary variables i,(k) must be additionally calculated Np 
times. The LPF algorithm for the multidimensional object is 
also time-consuming, since at every time step, the auxiliary 
variables si,(k) must be drawn to each particle until the values 
of those variables corresponding to each state variable are 
greater than zero (in the authors opinion it could be 
improved and it will be one of the future research 
directions). 

In the future, the authors plan to develop several other 
modifications of the particle filter, general Likelihood PF 
among others (to work not only with objects with square 
measurement functions). 

 

Table 1. The average values of quality indices 
Object Indices EKF UKF BF APF LPF 

Ob1 

aRMSE 16.1 6.29 4.70 5.00 14.9 
Jx 26.0 3.97 2.22 2.51 21.7 
Jy 36.2 14.1 5.14 4.00 1.28 
y1 2.88 2.59 1.68 1.49 1.14 
y2 2.88 2.59 1.68 1.49 1.14 

Ob2 

aRMSE 28.7 8.35 5.74 5.89 5.98 
Jx 17.3 3.18 1.13 1.20 1.31 
Jy 8.99106 8.59103 210 194 30.4 
y1 410 26.0 8.08 7.32 2.94 
y2 397 18.7 7.40 6.65 2.46 

 

Table 2. The calculation times [s] for all methods and objects (time 
for 1000 repetitions) 

Obiekt EKF UKF BF APF LPF 
Ob1 0.3 48.9 1511.8 3043.7 733.7 
Ob2 100 222.3 2019.9 6541.2 5497.7 
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