Wpływ zjawisk cieplnych na parametry dynamiczne tranzystora IGBT

Streszczenie. W pracy przedstawiono wyniki badań eksperymentalnych ilustrujących wpływ zjawisk cieplnych na parametry dynamiczne tranzystora IGBT. Zaprezentowano zastosowany układ pomiarowy oraz przedstawiono wyniki pomiarów charakterystyk i parametrów dynamicznych wybranego tranzystora IGBT typu STGF14NC60KD wyprodukowanego przez firmę ST Microelectronics pracującego w różnych warunkach. Przeanalizowano wpływ temperatury otoczenia oraz zjawiska samonagrzewania na przebieg charakterystyk dynamicznych tego tranzystora.

Abstract. The paper concerns the study on an influence of thermal phenomena on selected parameters of the IGBT. In the paper, the used measurement set-up and the measured waveforms of waveforms of the investigated transistor obtained under different operating conditions are presented. Particulary, the influence of the ambient temperature and the self-heating phenomenon on the shape of these waveforms is discussed. (Influence of thermal phenomena on the selected parameters of the IGBT)

Słowa kluczowe: IGBT; samonagrzewanie; charakterystyki dynamiczne; parametry dynamiczne; przełączanie; pomiary. Keywords: IGBT; self-heating; waveforms; dynamic parameters; switching; measurements.

Wprowadzenie

Półprzewodnikowe przyrządy mocy są powszechnie stosowane w impulsowych układach zasilających oraz analogowych układach elektronicznych o działaniu ciągłym [1, 2, 3]. W zakresie wysokich napięć i prądów, powszechnie stosowane są tranzystory IGBT [2]. W literaturze można znaleźć informacje o wielu typach tranzystorów IGBT takich jak np. punch-through (PT), non-punch-through (NPT), fieldstop IGBT. Opis tych technologii można znaleźć m. in. w pracy [4]. Na rynku są też dostępne typy tranzystorów, które są oznaczane wyłącznie numerem generacji np. IGBT4 [5].

Z inżynierskiego punktu widzenia, oprócz parametrów granicznych opisujących dopuszczalne wartości prądu kolektora oraz napięcia kolektor-emiter, istotne znaczenie mają parametry dynamiczne. Najistotniejszymi spośród nich są czasy włączania i wyłączania tranzystora. To one decydują o wartościach energii strat włączania i wyłączania, które w typowych warunkach pracy tranzystora mają istotny wpływ na wartość całkowitych strat energii w jednym okresie pracy tego tranzystora stosowanego w układach impulsowych. Energia tracona w tranzystorze wydziela się na nim w postaci ciepła, a jej nadmiar może skutkować uszkodzeniem elementu W wyniku przekroczenia dopuszczalnej temperatury wnętrza [6, 7, 8].

Jak powszechnie wiadomo, parametry i charakterystyki przyrządów półprzewodnikowych silnie zależą od temperatury. Na skutek zjawisk termicznych, między innymi zjawiska samonagrzewania, temperatura wnętrza przyrządu półprzewodnikowego T_j przekracza, czasem znacząco, wartość temperatury otoczenia T_a. Parametrem opisującym związek między temperaturą wnętrza elementu półprzewodnikowego a wydzielaną w nim mocą jest rezystancja termiczna [9].

Celem pracy jest zbadanie wpływu temperatury otoczenia oraz zjawiska samonagrzewania na parametry dynamiczne wybranego tranzystora IGBT. Zaprezentowano zmierzone przebiegi czasowe napięcia kolektor-emiter, prądu kolektora oraz mocy wydzielanej w tranzystorze w trakcie procesu włączania i wyłączania tego elementu oraz wyznaczono podstawowe parametry dynamiczne opisujące ten proces. Przedstawiono także wpływ częstotliwości przełączania tranzystora na temperaturę obudowy tego elementu.

Metoda pomiaru

W celu zmierzenia parametrów dynamicznych tranzystora zastosowano układ pomiarowy przedstawiony na rys. 1.

Rys.1. Schemat układu do pomiaru charakterystyk dynamicznych tranzystora IGBT

W zaprezentowany układzie pomiarowym, źródło U_{CC} służy do zasilania obwodu kolektora. Sygnał przełączający jest generowany przez generator funkcyjny, który jest dołączony przez driver MCP1305 [10] i rezystor R_G do bramki badanego tranzystora. Rezystor R_C ogranicza prąd w obwodzie kolektora, a rezystor R_G – maksymalny prąd bramki tranzystora. Ponadto, w układzie pomiarowym zastosowano oscyloskop Rigol DS1052E, sondę prądową Tektronix TCPA 300, zasilacz NDN DF1760SL10A i generator NDN JC5603P. Temperatura obudowy badanego tranzystora była mierzona pirometrem Optex PT-3S. Pasmo zastosowanego oscyloskopu wynosi 50 MHz, a sondy prądowej – 100 MHz. Driver MCP1305 charakteryzuje się dopuszczalnym prądem wyjściowym wynoszącym 4,5 A oraz maksymalnym napięciem wyjściowym równym 18 V.

Do badań wybrano arbitralnie tranzystor IGBT wyprodukowany przez firmę ST Microelectronics, oznaczony przez producenta symbolem STGF14NC60KD [11]. Element ten charakteryzuje się dopuszczalną wartością napięcia kolektor-emiter równą 600 V oraz dopuszczalnym prądem kolektora wynoszącym 14 A. Badany egzemplarz został zamknięty w obudowie TO220FP. W trakcie pomiarów tranzystor umieszczony był w termostacie KBC – 65G. W dalszej części pracy zostały przedstawione wyniki pomiarów przebiegów czasowych, które zostały zmierzone w warunkach: izotermicznych (temperatura wnętrza tranzystora była równa temperaturze otoczenia) i w stanie termicznie ustalonym. Aby wykonać pomiar w warunkach izotermicznych ustawiano wyzwalanie oscyloskopu w tryb single, a następnie włączano w układ pomiarowy źródło U_{cc}, co pozwalało zarejestrować pierwszy okres prądu kolektora i napięcia na bramce badanego tranzystora. W obu przypadkach mierzonymi wielkościami było napięcie u_{GG} oraz prąd i_c. Wielkości te zaznaczono na rys. 1.

Wyniki badań

Korzystając z opisanego w poprzednim rozdziale układu pomiarowego zmierzono wybrane charakterystyki dynamiczne badanego tranzystora. Wszystkie przedstawione w tym rozdziale przebiegi napięć i prądów zostały zmierzone przy napięciu zasilania obwodu kolektora UCC równym 65,5 V oraz częstotliwości sygnału sterującego u_{GG} równej 5 kHz, amplitudzie tego sygnału równej 15 V, współczynniku wypełnienia równym 0,5 i rezystancji bramki RG = 210.

Rys.2. Zmierzone przebiegi $i_{\rm C}(t)$ i $u_{\rm GG}(t)$ w trakcie wyłączania a) i włączania b) badanego tranzystora.

W niniejszej pracy skorzystano z definicji czasów magazynowania (t_s), opadania (t_f), opóźnienia przy załączaniu (t_d), narastania (t_r) włączania (t_{on}) oraz wyłączania (t_{off}) przedstawionymi w pracy [5]. Zgodnie z definicją podaną w cytowanej pracy, czas magazynowania jest to czas, który upływa od osiągnięcia 90% wartości w stanie ustalonym napięcia na bramce do spadku prądu kolektora do 90% jego wartości w stanie ustalonym przed zainicjowaniem procesu wyłączania, czas opadania to czas, w jakim prąd kolektora maleje od 90% do 10% swojej wartości przed zainicjowaniem procesu wyłączania. Czas opóźnienia przy załączaniu to czas, który upływa od osiągnięcia 10% wartości w stanie ustalonym napięcia na

bramce do chwili, gdy prąd kolektora wzrośnie do 10% jego wartości po załączeniu. Czas narastania to czas, w jakim prąd kolektora wzrasta od 10% do 90% wartości w stanie ustalonym.

Charakterystyki przedstawione na rys. 2 - 3. zostały zmierzone w warunkach izotermicznych przy trzech wartościach temperatury otoczenia dla rezystancji obciążenia R_L = 100 . Na poniższych rys. linią niebieską oznaczono wyniki pomiarów wykonanych przy temperaturze otoczenia równej 21°C, zieloną - 71°C, czerwoną – 114°C. Na wszystkich wykresach linią pomarańczową oznaczono napięcie u_{GG}.

Rys. 2a. przedstawia zmierzone w warunkach izotermicznych przebiegi czasowe prądu $i_{\rm C}$ i napięcia $u_{\rm GG}$ w czasie wyłączania, a rys. 2b. - w czasie włączania tranzystora.

Jak widać na rys. 2a, opadanie przebiegu $i_C(t)$ wykazuje zmienne nachylenie. Widoczny jest spadek nachylenia w zakresie prądów kolektora zbliżonych do zera oraz powolne opadanie przebiegu na początku procesu wyłączania. Wraz ze wzrostem temperatury wydłuża się istotnie czas magazynowania oraz końcowa faza opadania. Nachylenie przebiegu w zakresie pośrednich wartości napięć nie zależy od temperatury. Ponad przeciętnie długi czas magazynowania wynika z dużej wartości rezystancji R_G. Rezystancja ta została tak dobrana, aby zminimalizować zniekształcenie przebiegu napięcia $u_{GG}(t)$.

Rys. 2b przedstawia zmierzone w warunkach izotermicznych przebiegi czasowe prądu $i_C(t)$ i napięcia $u_{GG}(t)$ w trakcie włączania tranzystora. Widoczne jest, że przebieg $i_C(t)$, podobnie jak w przypadku procesu wyłączania, charakteryzuje się zmiennym nachyleniem w trakcie przełączania. W zakresie prądów i_C zbliżonych do wartości w stanie ustalonym widoczny jest gwałtowny spadek nachylenia przebiegu $i_C(t)$.

W tabeli 1. przedstawiono zmierzone wartości czasów przełączania badanego tranzystora. Czasy te są wyznaczone zgodnie z definicjami zawartymi w pracy [5].

Tabela 1. Zmierzone wartości parametrów dynamicznych badanego tranzystora

$T_a [^{\circ}C]$	t _s [ns]	t _f [ns]	t _{off} [ns]	t _d [ns]	t _r [ns]	t _{on} [ns]
21	564	276	840	156	222	520
72	592	456	1048	152	192	476
115	624	648	1272	148	184	456

Jak wynika z tabeli 1, obie składowe czasu wyłączania (t_s oraz t_f) rosną ze wzrostem temperatury, a składowe czasu włączania (t_d oraz t_r) maleją przy wzroście temperatury. Wraz ze wzrostem temperatury wydłuża się tzw. ogon prądowy [5], który jest przyczyną tego, że czas wyłączania jest znacznie dłuższy od czasu włączania, a różnica ta rośnie wraz ze wzrostem temperatury.

Rys. 3 przedstawia zmierzone izotermiczne przebiegi prądu $i_C(t)$ w trakcie procesu wyłączania (rys 3a) oraz w trakcie włączania badanego tranzystora (rys 3b) przy trzech wartościach rezystancji obciążenia R_L równych kolejno: 100, 25 i 14.7.

Na rys. 3a i 3b widoczne jest, że wartości czasu wyłączania i włączania istotnie rosną wraz ze wzrostem przełączanego prądu. W przypadku wyłączania, w badanym zakresie prądu I_C wydłuża się on z 810 ns do 1,14 s, a czas wyłączania rośnie ze wzrostem prądu o 90 ns/A. W przypadku włączania, w badanym zakresie rośnie on wraz ze wzrostem prądu I_C od 482 ns do 1,36 s, a czas włączania rośnie ze wzrostem prądu o 237 ns/A.

Rys.3. Zmierzone przebiegi $i_{\text{C}}(t)$ i $u_{\text{GG}}(t)$ w trakcie wyłączania a) i włączania b) badanego tranzystora

Rys.4. Zmierzone przebiegi czasowe prądu kolektora I_C w trakcie procesu wyłączania a) oraz włączania b) badanego tranzystora

Jak wynika z rys 3, czas wyłączania dla małych prądów jest istotnie większy od czasu włączania, jednak dla dużych prądów relacja ta ulega odwróceniu.

Na rys. 4 i 5 porównano przebiegi czasowe prądów $i_C(t)$ oraz mocy rozpraszanej w tranzystorze p(t) badanego tranzystora zmierzone w stanie termicznie ustalonym i w warunkach izotermicznych. Linią niebieską oznaczono wyniki pomiarów izotermicznych a linią czerwoną wyniki pomiarów w stanie termicznie ustalonym.

Rys. 4a i 4b przedstawiają zmierzone przebiegi czasowe izotermiczne i w stanie termicznie ustalonym przedstawiające proces wyłączania tranzystora przy rezystancji R_L = 14,7 . W trakcie pomiarów w stanie termicznie ustalonym temperatura obudowy wynosiła aż 147°C.

Na rys. 4a widoczne jest, że czas wyłączania istotnie rośnie skutek zjawiska samonagrzewania na występującego w badanym tranzystorze. W przypadku pomiaru izotermicznego czas ten wyniósł 1,14 s, a dla pomiaru w stanie termicznie ustalonym 1,43 s, czyli aż o 25% więcej. Na rys. 4b widoczne jest, że czas włączania maleje na skutek zjawiska samonagrzewania występującego w badanym tranzystorze. W przypadku pomiaru izotermicznego czas ten wyniósł 1,36 s, a dla pomiaru w stanie termicznie ustalonym 1,22 s, czyli o 10% mniej.

Rys. 5 przedstawia zmierzone przebiegi czasowe mocy traconej w tranzystorze przy rezystancji R_L= 14,7 w trakcie jego wyłączania (Rys. 5a) i włączania (Rys. 5b). W trakcie pomiarów temperatura obudowy badanego tranzystora w stanie ustalonym wynosiła 149°C. Moc tę wyznaczono korzystając z wyników pomiarów wykonanych za pomocą oscyloskopu i następującego wzoru:

(1)
$$P = (V_{CC} - I_{CC} \cdot R_L) \cdot I_C$$

Rys.5. Zmierzone przebiegi strat mocy w tranzystorze w trakcie wyłączania a) i włączania b) badanego tranzystora

W celu oceny ilościowej procesu przełączania tranzystora, wyznaczono energię niezbędną do przełączania tranzystora. W tabeli 2 zebrano obliczone

wartości energii strat w procesie włączania E_{on} i wyłączania E_{off} oraz całkowitą energię strat przełączania E_{ts} będącą sumą energii strat włączania i wyłączania. Wartości powyższych parametrów obliczono całkując metodą trapezów czasowe przebiegi mocy przedstawione na rys. 5. Przyjęto następujące zakresy obliczeń: w przypadku wyłączania jest to całka z mocy po czasie wyłączania, a w przypadku wyłączania – ze względu na długi ogon prądowy, całka z mocy w granicach od początku procesu włączania do 5 s od rozpoczęcia tego procesu.

Tabela 2. Zmierzone wartości energii przełączania w warunkach izotermicznych i w stanie termicznie ustalonym przy rezystancji obciążenia R_L =14,7

	izotermiczne	stan termicznie ustalony		
E _{on} [J]	65,8	58,2		
E _{off} [J]	46,4	60,9		
E _{ts} [J]	112,2	119,1		

Jak wynika z tabeli 2, zjawisko samonagrzewania powoduje wzrost energii traconej w tranzystorze w procesie przełączania, a w konsekwencji sprawność procesu przełączania ulega obniżeniu. Wzrost całkowitych strat energii procesu przełączania E_{ts} na skutek zjawiska samonagrzewania wynika przede wszystkim ze wzrostu energii traconej podczas wyłączania. W badanym przypadku wzrost ten wyniósł aż 31%. W przypadku włączania, energia tracona w tranzystorze maleje o zaledwie 12% na skutek zjawiska samonagrzewania.

Przedstawione w tabelach 1 i 2 wyniki pomiarów istotnie (nawet o setki procent) odbiegają od wartości katalogowych. Wynika to z różnicy w wartościach napięcia zasilania obwodu kolektora, przełączanego prądu kolektora oraz rezystancji R_G i R_L . Mimo tych różnic, uzyskane wyniki pozostają wiarygodne i pozwalają na ocenę wpływu zjawiska samonagrzewania na pracę tranzystora IGBT w układzie przełącznika.

Wnioski

W pracy przedstawiono wyniki pomiarów parametrów dynamicznych tranzystora IGBT. Uzyskane wyniki udowadniają, że temperatura otoczenia, zjawisko samonagrzewania oraz wartość prądu i_c mają silny wpływ na parametry dynamiczne tranzystora takie jak: czas włączania, czas wyłączania oraz energia strat przełączania.

Zaprezentowane rezultaty pokazują, że wzrost temperatury i zjawisko samonagrzewania niekorzystnie wpływają na proces wyłączania powodując wydłużenie tego procesu. W przypadku włączania, czas jego trwania ulega skróceniu pod wpływem zjawisk cieplnych. Uzyskane wyniki potwierdzają, że w celu wiarygodnego modelowania właściwości dynamicznych tranzystora IGBT niezbędne jest uwzględnienie wpływu temperatury otoczenia oraz zjawiska samonagrzewania. Zaprezentowane rezultaty posłużą do rozwijania dynamicznego, elektrotermicznego modelu tranzystora IGBT.

Autorzy: mgr inż. Paweł Górecki, Akademia Morska w Gdyni, Katedra Elektroniki Morskiej, ul. Morska 83, 81-225 Gdynia.

LITERATURA

- [1] Ericson R., Maksimovic D.: Fundamentals of Power Electronics, *Norwell*, Kluwer Academic Publisher, (2001)
- [2] Rashid M.H.: Power Electronic Handbook, *Academic Press*, Elsevier, (2007)
- [3] Kazimierczuk M.K.: Pulse-width Modulated DC-DC Power Converters, John Wiley &Sons, Ltd, (2008)
- [4] Baliga B. J.: Analytical Modeling of IGBTs: Challenges and Solutions, *IEEE Transactions on Electron Devices*, Vol. 60, No. 2., (2013), 535-543
- [5] Napieralski A., Napieralska M.: Polowe półprzewodnikowe przyrządy dużej mocy, Wydaw. Naukowo-Techniczne, Warszawa, (1995)
- [6] Zarębski J., Górecki K.: The electrothermal large-signal model of power MOS transistors for SPICE, *IEEE Transactions on Power Electronics*, Vol. 25, No. 5-6, (2010), 1265 – 1274
- [7] Górecki P., Górecki K.: Influence of Thermal Phenomena on dc Characteristics of the IGBT, *International Journal of Electronics and Telecomunications*, Vol. 64, No.1, (2018), 71-76
- [8] [A. Castellazzi, Y.C. Gerstenmaier, R. Kraus and G.K.M. Wachutka, Reliability analysis and modeling of power MOSFETs in the 42-V-PowerNet, *IEEE Transactions on Power Electronics*, Vol. 21, (2006), No. 3, 603-612
- [9] Górecki K., Górecki P.: The Analysis of Accuracy of Selected Methods of Measuring the Thermal Resistance of IGBTs, *Metrology and Measurement Systems*, Vol. 22, No. 3, (2015), 455-464
- [10] MCP1405 4.5A Dual High-Speed Power MOSFET Drivers, Datasheet, Microchip, (2007)
- [11] STGF14NC60KD Insulated Gate Bipolar Transistor With Ultrafast Soft Recovery Diode, Datasheet, ST Microelectronics, (2017)