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Currents’ Physical Components (CPC) – based Power Theory 
A Review 

Part I: Power Properties of Electrical Circuits and Systems 
 
 

Abstract. The CPC-based power theory (PT) of electrical circuits and systems provides an interpretation of the energy transfer-related physical 
phenomena in such systems and fundamentals for their compensation. It has been developed, step-by-step, with partial results published in Polish, 
German, English and American journals and in conference proceedings, often not reported on the main databases and consequently, difficult to be 
found. Its development was a reaction for the lack of progress in long-lasting attempts aimed at explanation of the energy transfer-related physical 
phenomena and the lack of fundamentals for compensation in electrical systems with nonsinusoidal voltages. This Review provides a draft of the 
whole CPC concept with references to more detailed results and a concise historical background and critical comments on other power theories.  
 
Streszczenie. Teoria mocy obwodów i systemów elektrycznych, oparta na koncepcji Składowych Fizycznych Prądów, tworzy podstawę teoretyczną 
dla interpretacji zjawisk fizycznych towarzyszących przesyłowi energii w takich układach i ich kompensacji. Była ona rozwijana stopniowo, z 
cząstkowymi wynikami publikowanymi w czasopismach polskich, niemieckich, angielskich i amerykańskich oraz w materiałach konferencyjnych, 
często trudnych do odnalezienia. Rozwój CPC był odpowiedzią na brak postępu w badanich nad teorią mocy i na brak podstaw kompensacji w 
układach z napięciami niesinusoidalnymi. Przegląd ten jest skrótem CPC, z odnośnikami do bardziej szczegółowych wyników oraz z tłem 
historycznym i krytycznymi uwagami dotyczącymi wyników innych teorii mocy. (Teoria mocy Składowych Fizycznych Prądów (CPC). Artykuł 
przeglądowy, Część I: Właściwości energetyczne obwodów i systemów elektrycznych). 
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Introduction 

The development of the power theory of electrical 
circuits and systems has more than century-long history 
with a great variety of different attempts aimed at its 
formulation, with a lot of discussions and controversy.  

The Currents’ Physical Components (CPC) – based 
power theory is one of these attempts. It describes and 
clarifies power properties of single-phase and three-phase 
systems with linear and nonlinear loads supplied with a 
non-sinusoidal voltage. It also creates fundamentals for 
compen-sation of such systems.  

It has been developed, as drafted in [51], step-by-step, 
starting [15] in 1983, with partial results published in Polish, 
German, English and in American journals, and in confe-
rence proceedings. The development of the CPC-based PT 
was interlaced with critical studies on other PTs. Unfortu-
nately, some results could not be easy to find. A 
prospective reader might not be even aware of their 
existence. Therefore, Part I of this Review is to provide 
fundamentals and be a major reference for the CPC-based 
power theory of electrical circuits and systems. This power 
theory creates also theore-tical fundamentals for the 
synthesis of reactive compensators and for the 
development of algorithms for control of switching 
compensators in electrical systems of any complexity. 
Fundamentals of the CPC-based methods of compensation 
will be drafted in Part II of this Review. 

A short history of the power theory 
Although the concepts of the active, reactive, and appa-

rent powers, P, Q, and S, have been known earlier, the 
present debate on power properties of electrical systems 

was initiated in 1892 by Steinmetz measurement [1] of 
powers in a circuit with an electric arc. He concluded that 
the power equation  

(1)                               
2 2 2S P Q   

was not valid. Steinmetz observed, that in spite of zero 
reactive power Q, the apparent power S was higher than the 
load active power P, thus  

(2)                                  S P . 

The cost of electric energy production and delivery by its  
provider is associated with the apparent power, while the 
value of that energy for the customer is associated with the 
active power P, therefore, the inequality (2) is very 
important for the power system economy. This inequality 
raises two questions. The first one is cognitive in nature, 
namely 

Why can the apparent power S be higher than the 
active power P? What physical phenomena in the 
load are responsible for this inequality? 

The second question has practical implications, namely  
How can the difference between the apparent power 
S and the active power P be reduced by a compen-
sator? 
Apparently easy questions inspired by the Steinmetz 

observation, have occurred to be ones of the most difficult 
questions of the electrical engineering. Hundreds of scien-
tists have attempted to explain and describe the power pro-
perties of loads with nonsinusoidal voltages and currents 
and develop methods of compensation. Hundreds of papers 
were published. Several “schools” of power theory [7], [8], 
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[12], [13], [19], [27], [35] were established. These “schools” 
of the power theory and comments to them, [14], [23], [31], 
[36], [37], [47], [50], [53], [54], represent only a part of much 
wider debate. A reader is encouraged to look also into 
papers [9], [11], [20], [22], [25], [28], [30], [32], [34], [38 - 
45], [51], [55] on the power theory.  

Schools of the power theory  
Budeanu’s power theory formulated in 1927 [7] in the 

frequency domain, was the first major attempt aimed at des-
cription of power properties of electrical loads supplied with 
nonsinusoidal voltage. It is probably the most widely 
distribu-ted power theory of single-phase circuits with 
nonsinusoidal voltages and currents. The correctness of 
this theory was challenged in 1987 [23], where it was 
demonstrated that  

- There is no physical phenomenon associated with the 
Budeanu’s reactive power Q. 
- There is no association between Budeanu’s distortion 
power D and the voltage and current mutual distortion. 
- There is no relation between the power factor improve-
ment and the Budeanu’s reactive power Q reduction. 
Fryze’s power theory, formulated in 1931 [8] in the 

time-domain, introduced the concept of the active current 
and the load current decomposition into orthogonal 
components. It introduced the concept of the reactive 
current but did not provide its physical interpretation other 
than that it is a useless current. It does not create 
fundamentals [31] for com-pensator synthesis or control. 

Shepherd and Zakikhani’s power theory formulated in 
1972 in the frequency-domain in [12] provided a right defi-
nition of the reactive current ir(t). It raised and solved the 

issue of calculation of the optimal capacitance Copt, which in 
the presence of the supply voltage harmonics increases the 
power factor to the maximum possible value. Unfortunately, 
the active power P was lost in the power equation they 
deve-loped.  

Kuster and Moore’s power theory formulated in 1980 
[13] in the time-domain, solved the problem of the optimal 
capacitance calculation without using the concept of harmo-
nics. The solution was valid, however, as shown in [14], 
[17], only at the ideal supply source. 

Instantaneous Reactive Power (IRP) p-q Theory, for-
mulated by Nabae, Akagi and Kanazawa in 1984 [19], in the 
time-domain, and generalized in [30], provides fundamen-
tals for switching compensator control. This control algo-
rithm is valid only at sinusoidal [41] and symmetrical [42] 
supply voltage, however. Moreover, the IRP p-q PT 
misinter-prets power phenomena [36], [37], [46] in electrical 
systems. 

FBD Method developed by Depenbrock [27] in the time-
domain, is a generalization of Fryze’s power theory for 
three-phase systems. It correctly defines, after Buchholtz 
[3], the apparent power S, but has all disadvantages of the 
Fryze’s power theory. 

The Conservative Power Theory (CPT), developed by 
Tenti and others in [35], is formulated in the time-domain 
and has a strong analogy to Budeanu’s power theory and 
its defi-ciencies, although it follows Fryze’s concept of the 
current orthogonal decomposition. The current components 
in the CPT do not have physical interpretation, however. 
Moreover, the CPT does not provide, as shown in [47, 50], 
right funda-mentals for a capacitive compensator design. It 
also wrongly defines, as shown in [54], the unbalanced 
power in three-phase systems. 

 
Definitions of apparent power in three-phase circuits 

Since most of the electric energy is transferred by three-
phase systems, power properties of such systems are of 

the crucial importance for the power systems economy. 
There-fore, there was a lot of research [3 - 5], [9 - 11], [19 - 
20], [22], [27 - 30], [32 - 35], [38 - 40], [43], focused on the 
development of the power theory of three-phase systems in 
the presence of harmonics and asymmetry.  

There were two major obstacles which made some of 
these efforts doomed to fail. First, three-phase systems 
have as their sub-set all single-phase systems. As long as 
the power properties of single-phase systems were not 
correctly described and comprehended, it was not possible 
to correctly describe such properties of three-phase 
systems. Second, all studies were carried on using the 
wrong definition of the apparent power S of three-phase 
systems. In 1920 a commit-tee of AIEE suggested [2] two 
definitions of the apparent power S, known as the 
arithmetical definition 

(4)                      S = SA=URIR + USIS + UTIT 

and the geometrical definition  

(5)                              2 2
GS = S P Q  . 

A debate [6] on these two definitions in the twenties was 
inconclusive and both of them were adopted as standard 
definitions. They can be found in the IEEE Standard Dictio-
nary of Electrical and Electronics Terms. There was also a 
definition of the apparent power suggested in 1922 [3] by 
Buchholtz, 

(3)            2 2 2 2 2 2
B R S T R S TS = S U U U I I I      

but it was dominated by the arithmetic and the geometric 
definitions, endorsed by the IEEE, and it was not used.  

When voltages and currents are sinusoidal and symmet-
rical these three definitions result in the same numerical 
value of the apparent power S and consequently, the power 
factor . When these conditions are not satisfied, the value 
of the power factor  depends on the apparent power 
define-tion. This is illustrated on the circuit in Fig. 1, with 
purely resistive load and an ideal transformer with the turn 
ratio 1:1. 

 

Fig. 1. A circuit with unbalanced purely resistive load. 

The load active power is equal to P = 304 kW, the 
reactive power Q is zero, because the load is purely 
resistive, while the apparent power S, depending on its 
definition, is  

SA = 351 kVA,       SG = 304 kVA,      SB = 430 kVA 

and consequently, depending on the selected definition, the 
power factor has the value 

A G B
A G B

0 86     1     0 71
P P P

. , , .
S S S

        . 

and it is not clear which value is the right one.  
The reasoning in [33], presented in 1999, has 

demonstra-ted that the right value of the power factor is 
obtained when the apparent power is calculated according 
to the Buchholtz definition. This selection of the right 
definition of the appa-rent power S eventually paved the 
road for describing unba-lanced three-phase systems in 
power terms in the frame of the CPC.  
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Main approaches to power theory development 
The main difference in various approaches to the power 

theory development boils down to two questions:  
- Should the power properties of a system be described 

in the time-domain or in the frequency-domain? 
- Should the power properties of a system be described 

in terms of instantaneous or in terms of averaged 
over the period values? 

Mathematically, due to the Fourier Transforms, descript-
tions of continuous quantities in the time-domain and in the 
frequency-domain are mutually equivalent. The question 
whether the power theory should be formulated in the frequ-
ency-domain, as suggested in [7], or in the time-domain, as 
suggested in [8], boils down to the question: should the 
concept of harmonics be used for that purpose or not?  

To answer such a question two aspects of the issue 
should be taken into account. The first of them is the metro-
logical availability of harmonics. Such availability can be 
cru-cial for technical implementations of a harmonics-based 
PT. When the concept of harmonics was introduced, it was 
pos-sible to measure, using tuned filters, only the rms value 
of harmonics. Their phase was practically beyond measure-
ment possibility. Now, sampling and a digital signal 
process-sing (DSP) are capable of providing complex rms 
(crms) values of harmonics up to relatively high order in real 
time. 
Thus, the availability of harmonics values is not an issue. 

The second aspect of the harmonics issue is more cru-
cial: does the concept of harmonics contribute to our com-
prehension of power phenomena or hinder it?  

Thinking of voltages and currents as sums of harmonics 
when applied to the energy flow studies may lead to unac-
ceptable conclusions. This was demonstrated by Fryze in 
[8] who analyzed the energy flow in the circuit shown in Fig. 
2, with dc supply voltage and a periodic switch. 

 
Fig. 2. A circuit with a periodic switch. 

According to the frequency-domain approach, the load 
voltage and current can be expressed in terms of harmonics 
in the forms 

(6)          10
1 0

( )  = 2 cos( ) =n n n
n n

u t U U n t u 
 

 
    

(7)          10
1 0

( )  = 2 cos( ) = n n n
n n

i t I I n t i 
 

 
   . 

The instantaneous power p(t) at the load terminals, i.e., the 
rate of energy, W(t), flows from the supply source to the 
load is equal to  

(8)  1
0 0 0

( ) ( ) ( ) =  = cos ( )r s n n
r s n

dW
p t = u t i t u i S n t

dt
 

  

  
    . 

Thus, it is equal to an infinite sum of oscillating 
components.  

This formula suggests the existence of an infinite 
number of oscillating components in the instantaneous 
power. To find the instantaneous power at any instant of 
time, this series has to be calculated.  

In the time-domain it is directly visible, however, from 
the voltage and current waveforms that, apart from 
discontinuity points, their product 

(9)                            ( ) ( ) ( ) 0p t =u t i t  . 

At discontinuity points, a tiny amount of energy is only 
stored in a stray inductance and capacitance of conductors.  

Thus there are no flow of energy and no energy oscilla-
tion in such a circuit. The time-domain approach is clearly 
superior to the frequency-domain in such a situation.  

The power theory of single-phase circuits with LTI loads 
at nonsinusoidal supply voltage was formulated, however, 
using the CPC concept, in the frequency-domain. Two main 
components of the load current, namely, the reactive 
current ir(t) and the scattered current is(t), are defined in 
[15], [16], using the concept of harmonics, meaning in the 
frequency-domain. Some attempts aimed at defining them 
in the time-domain have failed. 

Let us discuss the second question related to instan-
taneous versus averaged approach. 

The most fundamental power quantity in electrical 
circuits and systems, the instantaneous power p(t), 
specifies the rate  
of the electric energy flow at each instant of time. Due to 
this interpretation, it is the most unquestionable power 
quantity. This can imply a conclusion that the whole power 
theory should be based on quantities defined as 
instantaneous ones.  

There are situations in power systems where indeed 
instantaneous values of voltages and currents are crucial, 
as it is during disturbances or faults. Performance of 
electrical systems with periodic voltages and currents is 
specified at normal operation entirely in terms of quantities 
defined as some integrals over the supply voltage period T, 
however. These are the active, reactive and apparent 
powers, the voltage and current rms value, the power 
factor, rms value of harmonics, harmonic distortion, or the 
voltage and current symmetrical components. The 
instantaneous power p(t) usually is not a matter of interest 
for system designers and operators. At the same time, 
terms like “rms”, “apparent power”, “harmonic” and 
“symmetrical component”, are alien for theories that 
describe instantaneous properties of elec-trical systems. 

The major difficulty of power theories that claim to be 
“instantaneous“ stems from the fact that power properties of 
the load cannot be identified instantaneously. This is 
illustrated in Fig. 3, with an unknown load and a pair of 
instantaneous values of the load voltage and current. As 
shown in Fig. 4. There could be a resistor, an inductor or a 
capacitor in this “black box”.  

 

Fig. 3. Unknown load and pair of instantaneous values of the load 
voltage and current. 
 

In fact, an infinite number of different loads can have 
identical pairs of voltage and current samples. Taking into 
account that the load voltage and current are in general 
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nonsinusoidal, the instantaneous values of the voltage and 
current over the whole period T have to be measured to 
draw conclusions on the load power properties.  

 

Fig. 4. Different loads with identical pairs of the voltage and current 
instantaneous value. 

 

Quantities obtained by averaging could be added to the 
instantaneous power theory, but this would undermine the 
claim that the theory is indeed instantaneous. It is just the 
case of the IRP p-q Theory, where the active power P can 
be found only by averaging the instantaneous active power 
p, but even with this averaging, the concepts of the 
apparent power S and consequently, the concept of the 
power factor does not exist inside of this theory. 

The CPC concept 
Explanation of the power properties of electrical 

systems in terms of physical phenomena in the load was 
the main idea behind the development of the Currents’ 
Physical Compo-nents - based power theory. This 
development was initiated for linear time-invariant (LTI) 
loads in Polish [15] and in English [18]. Initially, in [15], [16], 
[18], [21], or [24], this approach was referred to as a 
“current orthogonal decom-position”. The term 
“Currents’ Physical Components” was used for the first 
time in [36]. Identification of the load current components 
associated with distinctive physical phenomena in the load, 
which gave the name to this theory, has served this goal. 
These components can be identified by measure-ment of 
voltages and currents at the load terminals.  

It is crucially important for the load current 
decomposition into CPC, that these components are 
mutually orthogonal. Being orthogonal, they contribute to 
the supply current rms value independently of each other. In 
such a way, the CPC reveals the effect of individual 
physical phenomena in the load upon the supply current 
rms value. Only one of these components is useful for the 
transfer of the energy from its provider to a customer; 
remaining ones are useless for that. Equally important for 
this theory development was finding relations of the CPC 
with the load parameters, that could be calculated based on 
measurements of the voltages and currents at the load 
terminals. These relations create very fundamentals for the 
development of reactive compensators. 

Single-phase circuits with LTI loads 
With respect to the active power P at the voltage u, a 

single-phase LTI load is equivalent to a purely resistive 
load, on the condition that its conductance is 

(10)                                 e 2|| ||

P
G

u
 . 

This conductance was called in [8] an equivalent 
conduc-tance of the load. It draws an active current,  

(11)                                 a ei G u  

from the supply source. The CPC-based PT requires that 
voltages and currents are expressed by Fourier Series, 
which are used, as initiated in [15], in a complex form 

(12)      1
0

1
2 Re ,     jjn t n

n n n
n

u U e U eU U 



   . 

Symbol Un denotes the complex rms (crms) [18] value of 
the nth order load voltage harmonic. The load has for 
harmo-nic frequencies the admittance Yn = Gn+jBn, thus, 
the load current can be expressed by a Fourier series as 
follows 

(13)  1 1
0 0 0

1 1
2Re 2Rejn t jn t

n n n
n n

i I e Y U e .I Y U 
 

 
      

The remaining part of the load current, i – ia, is useless 
for the energy transfer. It can be presented in the form 

(14)           

1

1

a 0 0
1

e 0
1

2Re ( )

      ( 2Re )            

jn t
n n n

n

jn t
n

n

i i G U G +jB e

G U e .

U

U












   

 




 

Two different components can be identified [15] in this 
useless current. One of them is “in-phase” or in “counter-
phase” with the voltage harmonics: 

(15)        1
0 e 0 e s

1
( ) 2Re ( ) jn t

n n
n

G G U G G e iU 



    . 

It occurs when the load conductance for harmonics Gn 
differs from the equivalent conductance Ge. The values Gn 
are usu-ally scattered around Ge, therefore, this component 
was called in [18], a scattered current. 

The remaining component of the useless current 

(16)                      1
r

1
2Re jn t

n n
n

jB e iU 



  

occurs due to a phase shift of the load current harmonics 
with respect to the load voltage harmonic. It was called a 
reactive current. Consequently, the load current can be 
decomposed into three components 

(17)                              a s ri i i i   . 

Each of these components is associated with a distinctively 
different physical phenomenon in the load and therefore, 
they stand for the Current Physical Components.  

The active current is associated with a permanent trans-
fer of the energy from the supply source to the load. 
Transfer with the rate, averaged over period T, equal to the 
active power P. 

The scattered current is associated with the 
phenomenon of the load conductance Gn change with the 
order of harmo-nic. This change is a common property of 
electrical loads.  

The reactive current is associated with the phenomenon 
of a phase-shift between the load current and the supply 
voltage harmonics. 

The reactive current ir is orthogonal to the active and to 
the scattered currents, ia and is, because (Appendix A) har-
monics of these currents are shifted mutually by /2. Ortho-
gonality of the active and the scattered currents is not 
directly visible, however. It was proven in [15], that their 
scalar product is zero. Namely, with (A4), we obtain  



PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 95 NR 10/2019                                                                               5 

(18)  

s a s a e e
0 0

2 2 2
e e e e

0 0 0

2
e e e

( )  = Re Re ( )

     ( ) ( )

                             ( || || ) = ( ) = 0.

* *
n n n n n

n n

n n n n n
n n n

i ,i G G G

G G G U G G U G U

G P G u G P P

I I U U
 

 
  

  

  

    

  

 

    

Thus, all components in the decomposition (17) are 
mutually orthogonal, hence their rms values satisfy the 
relationship 

(19)                    2 2 2 2
a s r|| ||  =  || || || || || ||i i i i  . 

Multiplying (19) by the square of the supply voltage rms 
value, ||u||, a power equation of LTI loads supplied with a 
nonsinusoidal voltage is obtained, namely 

(20)                          2 2 2 2
s =  S P D Q   

where 

(21)         a s s r= || || || ||,     = || || || ||,     = || || || ||. P u i D u i Q u i  

are the active, scattered and reactive powers. 
Decomposition (17) is not valid, however, when the load, 
due to nonlinearity or time-variance, is a source of current 
harmonics. Such loads are referred to as Harmonic 
Generating Loads (HGL). 

Single-phase circuits and systems with HGL 
In paper [26] there was considered a purely resistive 

circuit, shown in Fig. 5, with a supply voltage  

1( ) = 100 2 sine t t  [V]  

and a load, which is a source the third order current 
harmonic 

1( ) = 50 2 sin 3j t t  [A]. 

 

Fig.5. An example of a circuit. 

The voltage and the current in the cross-section x-x, have 
the waveforms 

1 1( ) = 80 2 sin 40 2 sin 3   Vu t t t   

1 1( ) = 20 2 sin 40 2 sin 3   Ai t t t  . 

Their rms value is equal to, respectively 

2 2|| || = 80 40 89 5 Vu .  ,   2 2|| || = 20 40 44 7 Ai .   

so that, the apparent power S in the cross-section x-x is 

|| || || || = 89.5 44.7 = 4000 VAS u i  . 

The active power P in this cross-section is equal to 

0

1
( ) ( ) 80 20 40 40 0

T

P u t i t dt
T

      . 

There is no phase-shift between the voltage and current 
harmonics thus, there is no reactive power in the cross-
section x-x. The conductance in this cross-section does not 
change with the harmonic order, hence there is no 
scattered power Ds. Thus, a question was asked in [26]: 
“how can the power equation be written when the active, 
scattered and the reactive powers are equal to zero, while 

the apparent power has a non-zero value?” We face the 
question: “S = to what?”. 

Analysis of circuits with HGL revealed, [26], that the 
active power of some harmonics Pn can be negative, thus at 
the frequency of such harmonics the energy is transferred 
from the load back to the supply source, where it is 
dissipated on the source resistance. This is a physical 
phenomenon, that should be taken into account by the 
power theory.  

Depending on the sign of the harmonic active power  

(22)                         cosn n n nP = U I    

at the load terminals, the set N of harmonic orders n can be 
divided into two sub-sets NC and NG, namely 

(23)            
C

G

if 0, i.e.,   | | 2,  then 

if 0, i.e.,   | | 2,  then .

n n

n n

P / n N

P / n N

 

 

  

  
  

It enables the voltage and the current decomposition 
into components with harmonics from sub-sets NC and NG, 
namely 

(24)          C G

C G

n n n
n N n N n N

i i i i i i
  

        

(25)         C G

C G

= n n n
n N n N n N

u u u u u u
  

      . 

Voltage uG is a negative sum of harmonics that occur at the 
load terminals as a response to the current iG. The same 
applies to harmonic active powers Pn, thus 

(26)         C G

C G

n n n
n N n N n N

P P P P P P
  

       . 

Sub-sets NC and NG do not contain common harmonic 
orders thus, currents iC and iG are mutually orthogonal. 
Hence, their rms values satisfy the relationship 

(27)                           C G
2 2 2|| ||  = || || + || ||i i i .   

The HGL could be nonlinear, but in a fixed working 
point, specified by the voltage u, the state of the circuit can 
be regarded as a sum of its responses to the voltage eC and 
the current jG separately, i.e., as a linear circuit. The 
Superpo-sition Principle allows us to analyze the original 
circuit with two equivalent circuits shown in Fig. 6. 

 

Fig. 6. (a) An equivalent circuit for harmonics orders n NC, and (b) 
an equivalent circuit for harmonics orders n NG. 

 
The circuit in Fig. 6a can be described according to the 

CPC approach. First of all, the current contains an active 
current 

(28)              C
C

C
Ca Ce Ce 2

,         
|| ||

P
i G u G

u
  . 

It differs from the active current as defined by Fryze, 
because the equivalent conductance GCe is defined by (28) 
in a diffe-rent way than in the Fryze’s power theory [8].  
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For each harmonic of the order n from the set NC the load 
admittance can be measured, so that the scattered and 
reac-tive components  

(29)    1
Cs 0 Ce 0 Ce

C

( ) 2Re ( ) jn t
n n

n N
i G G U G G eU


       

(30)                1
Cr

C

2Re jn t
n n

n N
i jB eU


     

can be calculated. In such a way the current of an HGL can 
be decomposed into four components, namely 

(31)                     i = iCa + iCs + iCr + iG.  

The last component in this decomposition iG, referred to as 
a load generated current, is associated with the 
phenomenon of a permanent energy transfer at some 
harmonic frequen-cies from the load back to the supply 
source.  

The active, scattered and the reactive currents, iCa, iCs, 
and iCr are mutually orthogonal for the same reasons as in 
circuits with LTI load. Consequently, the rms values of the 
load current Physical Components satisfy the relationship 

(32)         G
2 2 2 2 2

Ca Cs Cr|| || = || || + || || + || || + || ||i i i i i . 
  

 
Fig. 7. A structure of three-phase, three-wire system. 

Three-phase circuits and systems with LTI loads at 
sinusoidal voltage  

An increase in complexity required [24] that three-phase 
systems, shown in Fig. 7, was described by more compact 
symbols than single-phase systems. In particular, three-
phase vectors, of voltages and currents, defined as follows:  

(33)       
R R

S S

T T

2Re 2Re { }j t j t
u
u e e
u

U
U
U

   
     
   
   

 u U   

(34)        
R R

S S

T T

2Re 2Re{ }j t j t
i
i e e
i

I
I
I

   
     
   
   

 i I . 

were needed for that. The active power of the load is 

(35) T
R R S S T T

1 1
( + + ) ( ) ( , )

0 0

T T
P u i u i u i dt dt

T T
    u i u i   

where symbol ( , )u i denotes a scalar product of the voltage 

and current vectors. Formula (35) is valid irrespective of the 
voltages and currents waveform or their asymmetry. When 
these quantities are sinusoidal, then the active power is 

(36)                   
=R,S,T

cosp p p
p

P = U I  .  

The reactive power Q, by analogy to the active power, is  

(37)                   
=R,S,T

sinp p p
p

Q U I   .  

The Buchholz definition of the apparent power is a 
special case of the definition of this power for systems with 
nonsinu-soidal voltages and currents, introduced [24] in 
1988: 

(38)                              || || || ||S  u i  

where symbols ||u|| and ||i|| denote a three-phase rms 
value, introduced in [24], of the supply voltage and the load 
current vectors. Its meaning is explained in Appendix C. 

One of the most important conclusions which can be 
drawn from the reasoning presented in [33] on the right 
definition of the apparent power S is the conclusion that if 
the apparent power S is defined correctly, i.e., by (38), then 
the commonly used power equation (1) is not valid. The 
valid equation can be obtained in the frame of the CPC 
concept. 

At the assumption that the supply voltage is sinusoidal, 
symmetrical of the positive sequence, the vector of the load 
currents (34) can be expressed [24] in terms of the line-to-
line admittances of the equivalent load as follows  

(39)  
R R R

S e S u T

ST T

2Re 2Re{ }j t j te e
I U U
I Y U Y U

UI U

 
     
       
     
     

i  

where 

(40)                   RS ST TRe e e+G jBY Y Y Y     

is referred to [24] as an equivalent admittance, and  

(41)   ST TR RS
2 /3

u u = ( ),    = 1ej * jeYY Y Y Y        

is referred to as an unbalanced admittance of the load. 
The first term of (39) can be rearranged to the form 

(42)   e a re e+2Re{ } 2Re{( ) }j t j tG jBe eY    U U i i  

where  

(43)       
p

a Re e2Re{ } 2Re{ }j t j tG Ge eU  i 1U  

is an active current, and  

(44)       
p

r Re e2Re{ } 2Re{ }j t j tB Bj e j eU  i 1U   

is a reactive current. The symbol p1 denotes a unite 
three-phase vector of the positive sequence 

(45)                         
p T[1, , ]* 1 .   

Formulas (43) and (44) enable us to relate the active and 
reactive currents to the crms value UR of the line R voltage. 
They emphasize the positive sequence symmetry of these 
currents. 

The second term of (39) has a negative sequence and it 
is zero when the load is balanced, i.e., YST = YTR = YRS. It 
can be rearranged to the form 

(46)    
R

n
u T u R u

S

2Re{ } 2Re{ }j t j te e
U

Y U Y U
U

 
 
   
 
 

i1  

and stands for an unbalanced current. Symbol n1 denotes 
a unite three-phase vector of the negative sequence 

(47)                            
n T[1, , ]* . 1  

In such a way, the vector of the load currents was decom-
posed into three components 

(48)                               i = ia + ir + iu 

associated with three distinctively different physical pheno-
mena: - with the permanent energy transfer from the supply 
source to the load (ia); - with the phase-shift between load 
voltages and currents (ir); and - with the load current asym-
metry (iu). Thus, these are Physical Components of three-
phase LTI loads current. 
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All these three components are mutually orthogonal. 
The active and reactive are orthogonal because they are 
shifted mutually by /2. The unbalanced current is 
orthogonal to the remaining ones because (Appendix D) 
they are of the oppo-site sequence. Consequently, the 
three-phase rms values of the current components of LTI 
loads satisfy the relationship 

(49)                   2 2 2 2
a r u|| || || || || || || ||  i i i i . 

Multiplying (49) by the square of the load voltage rms value 
||u||, the power equation  

(50)                             2 2 2 2
uS P Q D    

of three-phase LTI loads is obtained, with 

(51)     2 2
a e r e|| || || || = || || ,    || || || || = || ||P G Q B   u i u u i u  

and 

(52)                       2
u u u|| || || || = || ||D Y u i u   

which is a new power quantity called in [24] an unbalanced 
power. 

Three-phase systems with LTI loads and nonsinusoidal 
supply voltage 

The current decomposition presented in the previous 
section was expanded for similar systems as previously, but 
with nonsinusoidal supply voltage in [24]. When this voltage 
is symmetrical, then particular voltage harmonics are also 
symmetrical. Depending on the harmonic order, they have 
positive, negative, or zero sequence symmetry. Since the 
load current in three-wire systems cannot contain 
harmonics of the zero sequence, the load is affected only 
by the voltage harmonics of the positive and of the negative 
sequence. It means that the voltage harmonics of the zero 
sequence should be eliminated from all quantities that 
describe the power properties of three-wire systems. It can 
be done by referencing the load voltage not to a ground, but 
to an artifi-cial zero. Such a voltage can be presented in the 
form 

(53)        1 1
R

S

T

2Re 2Re
n

jn t jn t
n n

n N n N
n

e e
U
U

U

 

 

 
   
  

 u U  

where N is a set of harmonic orders of the positive and 
nega-tive sequence harmonics. The active power of the 
load is 

(54)       
0

1 ( ) ( ) ( , ) Re
T

n n
n N

P t t dt
T

*
 



    U Iu i u i .  

With respect to the active power P, the load is 
equivalent to a balanced resistive load at the same voltage 
u, configu-red in star, referred to as the equivalent 
conductance of three-phase loads, if this conductance is 
equal to 

(55)                                e 2
.

|| ||
PG 

u
 

This is because the active power of such a load is  

(56)            2 2 2 2
e R S T e(|| || +|| || +|| || ) = || ||P G u u u G u . 

Such an equivalent resistive load draws the current 

(57)                           a e( ) ( )t G ti u   

which is referred to as the active current of the load. Its 
physi-cal interpretation is the same as discussed previously. 

Since the load is linear, its current can be calculated 
using the Superposition Principle, i.e., harmonic-by-harmo-
nic, and for an individual harmonic the current decompose-

tion, obtained in the previous Section, remains valid. Thus, 
a load current harmonic of the nth order can be decomposed 
into 

(58)                        in = ian + irn + iun 

with 

(59)            a e 2
( ) ( ) ( )

|| ||
n

n n n n
n

P
t G t t i u u

u
. 

The current harmonic components in (58), depending on 
the order n, can be of the positive or of the negative 
sequence. To express them in a compact analytical form, a 
unite three-phase vector for the nth order harmonic can be 
defined, namely 

(60) 

p
2

n3

2 z
3

1
, for =3 21

1 , for =3 1, =1, 2...

, for =3     
1

jn
n n

*jn n

n k

e n k k

n k
e









                     

1

1 1

1

 

where 

(61)                   2 31 ( )jn / n
n e *   . 

With such a vector  

(62)               
1

Rr e2Re{ }
jn t

n n n nBj eU


i 1  

(63)               
1

Ru u2Re{ }
jn t*

n n n n eY U


i 1 . 

In these formulas, the Ben is a load equivalent susceptance 
for the nth order harmonic. It is an imaginary part of the load 
equivalent admittance for that harmonic 

(64)          RS ST TRe e e+ n n nn n nG jBY Y Y Y   . 

If we return to a sinusoidal situation, discussed in the 
previous Section, it will occur that the equivalent admittance 
is independent on the harmonic sequence. The unbalanced 
admittance for that harmonic is dependent on this 
sequence, however, and it is equal to 

(65)      ST TR RSu u = ( )j n
n n n n n n

*
ne .YY Y Y Y      

Having components of the load current harmonic in, the 
load current can be expressed as 

(66)    a r u a r u( ) = n n n n n
n N n N n N  

       i i i i i i i i . 

Because the equivalent conductance Gen of the load can 
change with the harmonic orders, the sum of active currents 
of individual harmonic ian is not equal to the active current ia 
of the load. It differs from this current by the scattered 
current 

(67)   1
s a a Re e2Re ( )

jn t
n n n

n N n N
nG G e .U



 

    i i i 1  

When (58) and (66) are combined, a decomposition of the 
load current into the Currents’ Physical Components is 
obtained 

(68)                       a s r u   i i i i i   

where 

(69)       1
r r Re2Re

jn t
n n n n

n N n N

jB eU


 

  i i 1  

is the load reactive current, and 

(70)       1
Ru u u2Re

jn t

n N n N

*
n n n n eY U



 

  i i 1  

is the load unbalanced current. 
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The current components in (58), as it was proven in the 
previous Section, are mutually orthogonal. Harmonics of 
different order are also orthogonal, hence, all components 
on the right side of (66) are mutually orthogonal. 
Orthogonality of the active and scattered currents in three-
phase systems was proven in [24]. Thus, all components of 
the load current in (68 ) are mutually orthogonal, so that 
their three-phase rms values satisfy the relationship 

(71)            2 2 2 2 2
a s r u|| || || || || || || || || ||   i i i i i .  

Three-phase systems with HGL at nonsinusoidal 
voltage 

The voltage and current distortion in three-phase indus-
trial systems can occur not only because of the distribution 
voltage distortion but also because of the presence of the 
harmonics generating loads (HGLs). The main idea of the 
load current decomposition in such a system into the Physi-
cal Components is identical to these applied to single-phase 
circuits with HGL, developed in [26]. It requires that the sign 
of the active power of individual harmonics 

(72)   R R R S S S T T Tcos cos cosn n n n n n n n n nP U I U I U I      

is identified. At a symmetrical voltage, it is enough to 
identify the sign of the term 

(73)          a R R S S T Tcos cos cosn n n n n n nI I I I     .  

This sign is used next for decomposition, according to (23), 
the set of all harmonic orders N into sets NC and NG. Having 
these sets, the vector of the load current can be 
decomposed into the Physical Components as follows 

(74)                 Ca Cs Cr Cu G    i i i i i i   

with  

(75)              G

G

C
C

C
Ca 2

,           
|| ||

n
n N

P


  i u i i

u
  

while the remaining components are defined according to 
(67), (69), (70), only the set N has to be replaced by NC.  

Three-phase systems with neutral  

Loads in three-phase systems with a neutral conductor 
are composed usually of balanced three-phase devices and 
aggregates of single-phase loads as shown in Fig. 8. The 
LTI 
load current decomposition into CPC was developed in [49]. 
A draft of this decomposition is presented below.  

 

Fig. 8. A load supplied by a three-phase, four-wire line. 

 

Fig. 9. An equivalent load for the nth order harmonic. 

When the load is LTI, then, the Superposition Principle 
can be applied to its analysis, i.e., it can be analyzed by a 
harmo-nic-by-harmonic approach. 

The load in Fig. 8 has for each individual harmonic of 
the nth order an equivalent circuit shown in Fig. 9, with the 
line-to-neutral admittances equal to 

(76)       
R S T

R S T
R S T

= ,       = ,       = . 
n n n

n n n
n n n

I I I
Y Y Y

U U U
 

The load current harmonic of the nth order is composed 
of an active current  

(77)           1
a e e( ) ( ) = 2 Re{ }jn t

n nn n nt G t G e  Ui u  

and the reactive current 

(78)           1
r e( )  2 Re{ }jn t

nn nt jB e  Ui       

where Gen and Ben are the real and imaginary parts of the 
load equivalent admittance for the nth order harmonic    

(79)        e e e R S T
1 ( )
3n n n n n nG jBY Y Y Y     . 

When the load is unbalanced, then the nth order current har-
monic contains moreover an unbalanced current 

(80)                      u a rn n n n  i i i i . 

The unbalanced component of the load current 
harmonic of the nth order can be asymmetrical so that it can 
be decom-posed into symmetrical components of the 
positive, negative and the zero sequences. It was found in 
[49] that these components of the unbalanced current can 
be specified in terms of three unbalanced admittances 

(81)    p
u R S T e

1[( ) (1+ )]
3n n n n n* * * *Y Y Y Y Y            

(82)    n
u R S T e

1[( ) (1+ )]
3n n n n n* * * *Y Y Y Y Y           

(83)    z
u R S T e

1[( ) (1+ )]
3n n n n n* *Y Y Y Y Y          

such that 

(84)   1p p n n z z
u u u u R2Re{( ) }jn t

n n n n n eY Y Y U   i 1 1 1 . 

The admittances (81) can have a non-zero value only 
for harmonics of the negative or the zero order, but it is zero 
for the positive sequence harmonics. Thus, the unbalanced 
current of the positive sequence in (84) can occur only if the 
supply voltage has harmonics of the negative or the zero  
sequence. 

The admittances (82) can have a non-zero value only 
for harmonics of the positive or the zero order, but it is zero 
for the negative sequence harmonics. Thus, the unbalanced 
current of the negative sequence in (84) can occur only if 
the supply voltage has harmonics of the positive or the zero 
sequence. 

The admittances (83) can have a non-zero value only 
for harmonics of the positive or the negative order, but it is 
zero for the zero sequence harmonics. Thus, the 
unbalanced current of the zero sequence in (84) can occur 
only if the supply voltage has harmonics of the positive or 
the negative sequence. 

The equivalent conductance of the load for harmonic 
fre-quencies Gen can differ from the equivalent conductance 
Ge, so that the load current can also contain a scattered 
current, as defined by (67). Thus, the load current in a 
three-phase system with a neutral conductor can be 
decomposed exactly as in the systems without the neutral 
conductor, i.e., as follows  

(85)                      a s r u   i i i i i   
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with the unbalanced current 

(86) 1p p n n z z
u u u u R2Re ( ) jn t

n n n n
n N

eY Y Y U 


  i 1 1 1  

which in four-wire systems has a more complex form as 
com-pared to this current in three-wire systems. 

When a system with a neutral conductor supplies not 
only LTI loads but also HGLs, then similarly as in three-wire 
systems, the load current contains moreover, as it was 
shown previously, a load generated harmonic current iG. It 
means, that the load current decomposition into CPC (74), 
developed for three-wire systems, and repeated once again 

(87)                 Ca Cs Cr Cu G    i i i i i i  

is valid also for three-phase systems with a neutral 
conductor and a nonsinusoidal, but symmetrical supply 
voltage. Thus, there are only five physical phenomena in 
three-phase sys-tems, both three-, and four-wire, with linear 
and/or harmonic generating loads, which affect the load 
current and its three-phase rms value, since it satisfies the 
relationship: 

(88)     2 2 2 2 2 2
Ca Cs Cr Cu G|| || || || || || || || || || || ||    i i i i i i . 

Summary 
This Review demonstrates that five and only five 

physical phenomena determine currents of three-phase 
loads sup-plied by a nonsinusoidal voltage. These are: 
1. A permanent flow of the energy from the supply source to 

the load, 
2. A permanent flow of the energy from the load to the 

supply source,  
3. A phase-shift of the load current harmonics with respect 

to the supply voltage harmonics,  
4. A change of the load conductance with the harmonic 

order, 
5. An asymmetry of the line currents, caused by the load 

imbalance.  
We should be aware, however, that the concept of “a 
physi-cal phenomenon” is not completely clear. What is 
and what is not a physical phenomenon can be a matter of 
a subjective judgement, [53], [55]. In spite of their name, the 
Currents’ Physical Components do not exist as physical, but 
only as mathematical entities. They are only an effect of a 
mathema-tical decomposition of the load current. 
Nonetheless, these Components are associated with 
distinctive physical pheno-mena that affect energy transfer 
in electrical systems. Therefore, this decomposition 
provides fundamentals for interpreting the energy transfer in 
terms of physical pheno-mena in electrical systems. 

The development of the CPC is not jet completed. This 
Review describes the power properties of electrical systems 
at the assumption that the supply voltage is symmetrical. 
These properties at asymmetrical voltage were described in 
[48], [52] only for three-wire, but not for four-wire systems.  

This decomposition is well suited to the present 
measure-ment technology, based on digital signals 
processing (DSP) so that all complex rms values needed for 
decomposition are easily available by measurements at the 
load terminals.  

The CPC can be specified in terms of the circuit para-
meters therefore, the CPC approach creates fundamentals 
for reactive compensator design and for control of switching 
compensators, known mainly as the active power filters.  

Appendix A 
The rms value of the sum of periodic quantities x(t) and 

y(t) of the same period T, is equal to 

2 2 2

0

1
   || || = || || = [ ( ) + ( )] || || 2 ( , ) +|| ||

T

z x y x t y t dt x x y y .
T

  (A.1)  

Their rms values satisfy the relationship 

(A.2)                          2 2 2|| ||  = || || || ||z x y   

on the condition that their scalar product 

(A.3)                       
0

1
( , ) = ( ) ( )

T

x y x t y t dt
T   

is zero. Quantities with zero scalar product are referred to 
as mutually orthogonal. The orthogonality of some 
quantities can be concluded without calculation. Orthogonal 
are sinu-soidal quantities shifted mutually by /2; harmonics 
of differ-rent order n, and quantities related mutually by 
integration. 

When quantities x(t) and y(t) are specified in terms of 

the crms values Xn and Yn, then their scalar product is 
equal to 

(A.4)              
00

1
( , )  = ( ) ( ) Re

T
*

n n
n

x y x t y t dt
T

X Y



  .  

Appendix B 
A scalar product of three-phase vectors x(t) and y(t) is 

defined as 

(B.1)                     
0

1
( , ) = ( ) ( )

T

t t dt
T

x y x y . 

When the vectors x(t) and y(t) are specified in terms of 
the three-phase vectors X and Y of the crms values of 
harmonics, then their scalar product can be calculated as 

(B.2)          
00

1
( , )  = ( ) ( ) Re

T
*

n n
n

t t dt
T




  x X Yx y y . 

Appendix C 
Let us consider a three-phase, purely resistive transmis-

sion device, shown in Fig. C1(a), with the current specified 
by the vector i.  

The energy dissipated by line currents in this device in 
one period T is equal to  

(C.1) 2 2 2 2 2 2
R R S S T T R R S S T T

0

( ) ( || || || || || || )
T

W R i R i R i dt R i R i R i T.       

 

Fig. C1. A physical interpretation of three-phase current rms value. 

Such devices are built in such a way that their symmetry 
is as high as possible, meaning that R S TR R R R   , 
thus, the active power of the device is 

(C.2)         2 2 2 2
R S T= ( || || || || || || ) || ||WP R i i i R

T
    i  

where the quantity 

(C.3)                     2 2 2
R S T|| || || || || || || ||i i i  i  

is referred to as a three-phase rms value of the three-
phase current. It is equal to a dc current of a single-phase 
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device, shown in Fig. C1(b), with resistance R, which is 
equivalent as to energy loss caused by the current vector i 
in a three-phase symmetrical device, shown in Fig. 10(a), of 
the same line resistance R. 
 A three-phase rms value of a symmetrical nonsinusoidal 
quantity 

(C.4)                12Re
jn t

n n
n N n N

e


 

   Xx x   

has a three-phase rms value 

(C.5)   2|| || ( , ) Re || ||*
n n n

n N n N 
    x x x xX X . 

Appendix D 
 Let a vector x(t) has a positive sequence, i.e.,  

(D.1)                
p

R2Re{ } j teX x 1  

and a vector y(t) has a negative sequence, i.e.,   

(D.2)                
n

R2Re{ } j teY y 1 . 

Their scalar product is zero, since 

p n
R R

R R

* *          ( , )  = Re{ } = Re{ ( ) } =

(D.3)             = Re{(1+ ) } = 0.      **

X Y

X Y 

 



x y 1 1X Y
 

Thus, such vectors are mutually orthogonal. 
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