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Dynamical processes simulation of vibrational mounting 
devices and synthesis of their parameters 

 
 

Abstract. A complex mathematical model of dynamic processes in vibrational mounting device for assembly robot is given. Such mathematical 
model makes it possible to research the starting process of the mechanism, the steady-state regimes and spatial motions of any points of the 
assembling part. A rational model for the motor with unbalance at controlled starting is proposed, which lead to spatial oscillations of the grab and 
part. With the help of ideas of the sensitivity theory the algorithm for parameters synthesis of the device by using natural modes of oscillations is 
developed. The following results are presented: calculations and experiments of free oscillations; synthesis of device parameters; studies of dynamic 
processes at the mechanism starting and at steady-state regimes, spatial motions of the characteristic points for assembling part. 
 
Streszczenie. Podano złożony model matematyczny procesów dynamicznych w wibracyjnym urządzeniu dla robota montażowego. Taki model 
pozwala badać proces uruchomienia mechanizmu, tryby w stanie ustalonym i ruchy przestrzenne dowolnych punktów części złożonej. 
Zaproponowano model silnika z niewyważeniem przy kontrolowanym starcie, który prowadzi do przestrzennych oscylacji chwytaka i części. Za 
pomocą koncepcji teorii wrażliwości opracowano  algorytm syntezy parametrów urządzenia za pomocą naturalnych trybów oscylacji. (Symulacja 
procesów dynamicznych wibracyjnych urządzeń montażowych i synteza ich parametrów). 
 
Keywords: dynamical process, vibrational mounting device, parameters synthesis, sensitivity theory, motor, unbalance. 
Słowa kluczowe: proces dynamiczny, wibracyjne urządzenie montażowe, synteza parametrów, teoria wrażliwości, silnik, niewyważenie. 
 
 

Introduction 
The problem of assembly automating by using of robots 

(manipulators) for increasing labor productivity, releasing 
hands, improving the work quality, as well as performing 
hazardous for health, physically heavy and monotonous 
work is actual for different industries. One of the promising 
directions in this problem solving is the use of uncontrolled, 
in particular, vibrational assembled devices. It’s using allow 
to abandon expensive sensors and servo drives at the 
assembly process even for non-axisymmetric parts without 
chamfers, does not impose high demands on the rigidity of 
the entire robot design. The assembly is as follows. The 
robot gripper "roughly" brings the assembling part, which is 
installed in the grab of the vibrational assembling device, to 
the connection point with another part (for example, a 
plunger to the plunger barrel). The assembling device is 
turn on, the part with the grab starts to do some spatial 
oscillations, and the parts are mated, even though the 
position of the assembling part was initially inaccurate. 
Spatial oscillations of the grab and parts are given by an 
unbalanced motor, which mounted on the assembling 
device. In Fig. 1 shows the assembly device with a 
vibrational mounting mechanism. 

In paper [1] mathematical models of devices for robots 
with low-frequency vibrations were created. Paper [2] is 
proposed the algorithms developments for the functioning of 
assembly mechanisms in shipbuilding. Paper [3] is devoted 
to dynamic processes simulation at starting process of 
vibrational mechanisms. Features of sensors and servo 
drive using are analyzed in paper [4], adaptive automatic 
grabs are considered in [5, 6]. An analysis of the design 
features of vibrational mounting devices is given in paper 
[7]. The simplest methods of parameters choosing for 
mechanisms are also presented there. Dynamic processes 
simulation in some devices with unbalanced vibro drives is 
devoted papers [8, 9], electromagnetic – [10, 11], 
mechanical – [12, 15]. 

The created samples of assembly devices are confirmed 
their high efficiency. However, the absence of mathematical 
models of such mechanisms, research methods, optimal 
choice of parameters and operating regimes makes it 
difficult to improve existing designs and rational 

arrangement of similar devices. Researches aimed at such 
problems solving are very actual [24]. 

The research objective is the creation of a complex 
mathematician model of dynamical processes in the 
vibrational mounting device for assembly robot, the 
algorithm development of synthesis of their parameters. 
The following problems must be solved: to create a 
complete system of differential equations of the vibrational 
device; to develop the algorithm for parameters synthesis of 
the device by using natural modes of oscillation; to propose 
the rational model for the controlled starting of the 
unbalanced motor; to develop methods for the motion 
studying of mechanism links and characteristic points of 
mounted parts during starting and on steady-state regimes 
[16,17].  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.1. Assembling device with vibrational mounting mechanism 
 

Implementation of calculation researches will be done 
by using of the developed model for choosing rational 
parameters of a particular device, dynamic processes 
during starting and on steady-state regimes, spatial motions 
of characteristic points of the mounted part [18, 19, 20]. 
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Mathematical model of dynamical processes in 
vibration device 
In Figure 2 the mechanism diagram for the assembly device 
is shown. Structurally, the device consists of several rigid 
bodies, connected together by elastic elements: 1 –
foundation for the mechanism fixing to the "arm" of the 
manipulator; 2 – ring; 3 – inclined bars; 4 – grab; 5 – 
mounted part; 6 – plate springs; 7 – tachometre; 8 – electric 
motor; 9 – unbalance; 10 – plate of the elastic support of 
the exciter, which is bent at 45° angle and fixed to the ring 
so that the motor axis formed angles of 45° with directions 
parallel to the axes of the plate springs. 
The motion equations of the mechanism can be written in 
the form of Lagrange’s equations of the second kind. 
Generalized coordinates. The fixed coordinate system is 
connected with the manipulator gripper, its origin is placed 
in the attachment plane of the grab to the plate springs (it is 
assumed that they are statically deformed). Axes Ox  and 

Oy  are directed along mentioned above springs, and the 

axis Oz  – vertically upwards. The ring position in the fixed 

coordinate system Oxyz  up to infinitesimals of higher order 

is determined by three generalized coordinates: x , y ,  . 

Coordinates x  and y  are determined a mass centre 

position of the ring. The coordinate   defines the rotation 

of the moving, rigidly connected coordinate system 

1 1 1 1O x y z  relative to the fixed coordinate system. 

It can be shown that the grab position relative to the ring up 
to infinitesimal higher orders also can be determined by 
three generalized coordinates: coordinates 

1x , 
1y  

define the grab rotation around the axes 1Ox  and 1Oy ; 

coordinate 1z z  – vertical displacement of the suspension 

point. It have been shown by experiments that in operating 
regimes of the mechanism the exciter position relative to 
the ring is completely determined by an angular coordinate 
 , and its elastic support can be modeled by a joint with a 

spiral spring (point 2O  in Fig. 2), the rigidity coefficient of 

which is easily determined experimentally [21, 22]. 
So the mechanism motion can be described by seven 

generalized coordinates: x , y ,  , 
1x , 

1y , 1z ,  . 

The total kinetic energy of the system can be written in 
assumption that oscillations are small in the form [3]: 
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where 1m – ring mass; 
1zJ – ring inertia moment about 

vertical axe; 2m  – grab and part mass; l  – distance from 

the suspension point to the mass center of the grab; J , J

, J  – inertia moments of the grab and the part about the 

principal central axes of inertia C , C , C ; 3m – exciter 

mass; 0R  – distance from the exciter mass to the 

mechanism axis; R  – distance from the exciter mass 
center to the joint axis;  – angle between the direction 

2 1O C  and horizontal line; xJ  , 3zJ – exciter inertia 

moments about axes 1C x  and 1 3C z  respectively; yJ  , 

zJ  – exciter inertia moments about axes 1C y  and 1C z  

respectively [23]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2. Scheme of the vibrational mounting mechanism 
 
For generalized restoring forces of small oscillations the 
following expressions can be written: 

xQ 4cx  ; yQ 4cy  ; 2
2Q 4cR   ; 

x 11
xQ c    ; 

y 11
yQ c    ;  

1z 1 1Q 4c z  ;  2Q c   , 

where 
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   – axial moment of inertia of a rectangular 

section of the plate spring; 1l  – free part length of the plate 

spring; 2l  – radius of the grab upper part; b  – width of the 

plate spring; h  – spring thickness; t
1

1

GJ
d

l
 ; 3

tJ h b   – 

resistance torque of rectangular cross-section;   – tabular 

coefficient dependent on the ratio h  and b ; G  – steel 

shear module; 
zz

1 3
1

12EI
c

l



 ; 2c  – the experimental value 

of the stiffness coefficient (equivalent stiffness of the elastic 
support of the exciter, see Fig. 2). 
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Perturbing forces and moments have the following form: 
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m  – unbalance mass; r  – distance from the unbalance 

mass centre to the motor axis; 
 r
zI   – total moment of inertia 

of the motor rotors and the tachometer about the axis z ; 
R  – distance from the mechanism axis to the intersection 
point of the motion plane of the unbalance with the motor 

axis; R  – distance from the joint axis 2O  to the 

intersection point of the motor axis and motion plane of the 
unbalance (see Fig. 2). 
In the study of steady-state regimes must be taking to 
account, that t   ,    , 0  . 

An integral effect of resistance forces is very important for 
considered devices, therefore, for the description simplicity, 
the generalized forces of resistance can be taken 
proportional to corresponding generalized velocities: 

x xQ x   
, y yQ y   

, Q
    , 

x x 11 1
xQ

    , 

y y 11 1
yQ

    , 
1 1z z 1Q z   

, Q
    . Inaccuracy 

in defining the damping coefficients x , y ,  , 
x 1

 , 

y1
 , 

1z ,   in analyzing transient regimes is not 

significant. It is more preferable to choose the damping 
coefficients by using experimental data about forced 
vibrations of designs prototypes at steady-state regimes, 
which are close to resonance. 
Motion differential equation of mechanism. Let's perform a 
standard procedure of Lagrange equations forming of the 
second kind (cumbersome transformation are not shown 
here), the mechanism equation of motion can be written as: 
(1)   Mq Bq Cq P , 

where 
1 1

т

x y 1x, y, , z, , ,      q  – vector of 

generalized coordinates (т – transpose sign); M  – inertia 

matrix;  x y 11 1
x y zdiag , , , , , ,          B  – 

diagonal damping matrix; 

 2
2 1 2diag 4c 4c 4cR c c 4c c, , , , , ,С
 

 – stiffness matrix; 

1 1 2 4

т

x y O z O zF F M 0 0 0 M, , , , , ,   P  – vector of perturbing. 

 
Calculation and experimental researches of dynamic 
processes in the vibrational mounting mechanism 

Frequencies and modes of the natural oscillations were 
experimentally determined for parameters correction of the 
obtained models. The lower frequency 1f 5 4Hz.  

corresponds to the intense rotational vibrations of the ring 
(other mechanism parts are practically stationary); the 
frequency 6f 23 5Hz.  corresponds to the intensive 

oscillations of the grab with the part and the exciter, while 
the ring do less intense oscillations in the axial directions x  
and y , and small rotational oscillations. Modes close to the 

frequency 23 5Hz.  were the most favorable for assembly. 
The other frequencies were determined by oscillograms 

interpretation of natural damped oscillations of the individual 
parts of the mechanism (ring, grab) with their various initial 
deflections. The following values of frequencies have been 
received: 2f 10Hz  (ring deflection in the axis direction x

); 3f 11Hz  (ring deflection in the axis direction y ); 

4f 16Hz  (initial coordinate variation 
1x  for the grab); 

5f 17Hz  (initial coordinate variation 
1y  for the grab). 

The frequency corresponding to a variation of the 
independent coordinate 1z  was not determined 

experimentally, since it is value much higher than the 
operating regimes of the mechanism. 
After the problem solving of eigenvalues and eigenvectors 

(2) 2( ) 0  M C h  

for equation 
(3) 0 Mq Cq , 

approximate calculated values of the corresponding 
frequencies were obtained: 1f 5 6Hz, ; 2f 8 36Hz. ; 

3f 9 24Hz. ; 4f 15 9Hz. ; 5f 18 6Hz. ; 6f 24 2Hz.  (

i if 2/   , i 1 6, ). 

Fig. 3 shows the most important modes of oscillations from 
a practical point of view. For better representation of 
oscillations modes, the angular coordinates were 

preliminarily multiplied by following linear dimensions:  –

 on 2R ; 
1x  and 

1y – on l ;  – on R  . For better 

comparison of different oscillations modes at normalization, 
the coordinate 

1x  was taken equal to unity. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3. Oscillations modes 
 

Synthesis of the mechanism parameters by using 
natural modes of oscillations. The device feature consists in 
the fact that it operates near resonance. This fact makes it 
possible to use calculations of natural oscillations when 
solving an optimization problem, since the mode of natural 
oscillations is close to the mode of resonance oscillations.  
Design considerations require that at operational regime a 
coordinates variation 

1x , 
1y  and   was maximal (to 

simplify and speed up mounting), but coordinates variations 
x  and y  – were minimal (to vibrations reduce of the all 

mounting device). Therefore, the problem can be 
formulated as follows. It is needed to consider modes of 
natural oscillations of the mechanism model and the 
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favorable ones to "improve" in the sense indicated above by 
varying the design parameters. 

A possible way of the problem solving - the use of ideas 
of the sensitivity theory [13, 14]. Let's assume that after 
solving the eigenvalues and the eigenvectors problems (2), 

it turns out that the eigenvector ih  ( i 1 n, ; in our case 

n 7 ) get a more favorable form of i
h . Denote the 

change ih  by  

(4) i i i
  h h h . 

Assuming that ih  is sufficiently small, lets introduce the 

partial derivatives of the vector ih  with respect to the 

variable parameters kp  ( k 1 m, ), then, up to second-

order infinitesimal, it can be written  

(5) 
m

i
i k

kk 1

p
p


  

 h
h , 

where kp  – change of the k -th parameter. It is obvious, 

that the following decomposition can be presented as 

(6) 
n

i
i jk j

k j 1

a
p 




 h
h ( j 1 n, ). 

If now expression   2
i i 0  M C h  differentiate with 

respect to the parameter kp  and multiply the resulting 

expression from left side by т
lh  ( l i ), then taking into 

account (6) can be obtained 

(7) 

т 2k k
l i i

k k
ilk 2 2 т

i l l l
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C M
h h

h Mh
. 

If l i , it makes sense to assume iika 0 . With taking to 

account (6) the expression (5) can be written as 
(8) i  h S p , 

where 

n n
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 – sensitivity matrix; 

 
т

1 mp p, ,   p  – vector of parameters variation. 

Expression (8) can be considered as an equation in p . 

Depending from ratio of n  and m  for p , we have the 

following: 

(9)   1т т
i


  p S S S h    ( m n ); 

(10) 1
i

  p S h    ( m n ); 

(11)   1т т
i


  p S SS h    ( m n ). 

The formula (9) is obtained by the least-squares method. 
With the help of expression (11), from an infinite set of 

solutions, the only one that has a property 2 min p . 

The new value of parameter vector, which is corresponding 
to the changed form, can be approximately represented as 
the following equation: 

(12) 0  p p p  

where 0p  – initial parameter vector. 

In formula (5) ih  is assumed small, which is rarely 

can be done. For large values of ih , it is needed to 

develop a special algorithm, that allows one to determine 
the necessary parameters variations by using one of the 
formulas (9)–(11). If the modules of some coordinates in the 
vector ih  are large, then the first step is executed with 

i
i r


 

h
h


 ( r 1 2, , ); r  is chosen so that the module 

jih  ( j 1 n, ) is small, for example, less than 5% of the 

module jih
. At every step an iterative process is realized. 

After the first iteration by using formula (9) can be obtained 

a parameter vector  1p  and a new eigenvector 
 1
ih . In a 

general case the last one differs from the vector i i h h , 

i.e. vector, which we try to attain on the first step. Further 

the residual 
   1 1

i ii i    h h h h
 

 can be determined and 

can be executed a second iteration with it to find  2p , 

 2
ih . Then the residual can be calculated 

   2 2
i ii i    h h h h

 
. The iterative process continues 

until the fulfillment of the condition will be done  

   

 

j 1 j
k k

j
k

p p

p

 
     ( k 1 m, ), 

where  – some small number. 

The eigenvector 
 j 1
i


h  obtained at the last iteration is 

taken as the vector ih , with its help we refine ih  by 

using formula (4) and execute the second step with the 

i
i r 1


 


h

h


 same as the first. The last r -th step is 

obviously executed for  

 
i

i ir r 1


   

 
h

h h


. 

We note an important fact in the software implementation of 

the algorithm. The initial improved vector form i
h , as well 

as the improved forms at each algorithm  step should be 
normalized, and the normalization should be the same as in 
the subroutine for determining of eigenvalues and 
eigenvectors. 
It is noted that such method can be used in the case of 
simultaneous correction of several modes of oscillations by 
using of block matrices. 
 

Optimization results by using modes of oscillations. 
Calculation researches of the mechanism have been done 
by using the following parameters:  

1m 0 607kg. ; 2m 0 534kg. ; 3m 0 502kg. ; 

1

3 2
zJ 0 517 10 kg m.    ; 

1

2 2
xJ 0 2019 10 kg m.    ; 

1

2 2
yJ 01873 10 kg m.    ; 

2

4 2
zJ 0 600 10 kg m.    ; 

2 2
xJ 0 6715 10 kg m. 
    ; 2 2

yJ 0 6715 10 kg m. 
   ; 
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4 2
zJ 0 642 10 kg m. 
   ; 0R 015m. ; R 0 05m. ; 

l 017m. ; cl 0 088m. ; cd 0 002m. ; 2R 0 048m. ; 

b 0 01m. ; h 0 0014m. ; 1l 0 025m. ; 2l 0 015m. ; 

45   ; 3
2c 01747 10 N m.   ; 6E 0 21 10 MPa.  ; 

5G 0 8 10 MPa.  ; 0 3.   (corresponds to b h 7 ). 

As variable parameters, were considered: 4
1 cp d ; 3

2p h
. Such parameters are not included in the inertia matrix, 

therefore 
1 2

0
p p

 
 

 
M M

. For derivatives of the stiffness 

matrix have the following expressions: 

2
23 3 3

1 c c c

3 E 3 E 3 E
diag 4 4 4R 0 0 0 0

p 16l 16l 16l
, , , , , ,

          

K
; 

3
2 1

Eb
diag 0 0 0 s b s b 4 0

p l
, , , , , ,

         

K
, 

where 
   2 1 2 1 2

3 2
11 1

l l 2l E 4l 6l E 0 6G
s

ll 6l

, 
   . 

Fig. 4 shows optimization results of the fifth mode of. As 
the preferable mode of oscillation, a calculated mode was 
chosen, in which the value of the coordinate   was 

increased by 30% and the coordinates values x  and y  

were decreased by the same percentage; values of others 
coordinates were taken without changes. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4. Optimization of the fifth mode of oscillations: 1 – initial; 
2 – preferable; 3 – after optimization 
 

In the figure, this mode is shown after the corresponding 

normalization used in the program  т
5 5h h 1 , because of 

what the coordinates values 
1x , 

1y  and   have smaller 

values than the original mode. Modes of oscillations are 
presented here without additional normalization, which was 
mentioned above. It can be seen from the figure that the 
obtained mode after optimization has a more preferable 
form than the original one, especially for the coordinate  . 

The values of the variable parameters were recognized as 

follows: 2
cd 0 288 10 m.   ; 2h 0177 10 m.   . 

Corresponding value of the fifth frequency was equal to 
24 25Hz. . This value is close to a slightly increased value 
of the sixth frequency, so the further program execution was 
terminated, since a small increase in the parameters would 
lead to a change in the number of the optimized mode. 
Such fact must be taken into account in the program. 

 

Studies of steady-state and transient regimes. 
 The created full model (1) allows to analyze the 

dynamic processes of both the mechanism starting process, 
and the steady-state regimes, to study a geometry of 
movements of the device links and the mounted parts. It is 
needed for a complete problems solution of synthesis 
parameters of the device.  

At components forming of the perturbation vector, it was 
assumed that the dependence of the angular speed of the 
motor rotor on the time has the form shown in the graph of 
Fig. 5. Such dependence is shown for the time moment of 
the device actuation. 

For the time interval 00 t t  , the quadratic law of 

angular speed variation is taken, which well consistent with 
the experimental data. The dependence of the rotation 
angle from the motor rotor on the time can be presented as: 

 

 

3
0 0 0

0 02
0

0 0 0 0 0

t t t
t t t

33t

2
t t t t t

3

, ;

, ,

   
   
  


   


 

where 0 – angular speed of the steady-state regime 

(controlled parameter); 0t  – transient time. 

 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5. Law of variation in the motor angular speed at starting 
 
The law of variation in the generalized coordinates x , y , 

 , 
1x  at the device starting is illustrated in Fig. 6-9. 

 
 
 
 
 
 
 
 
 
 
 
Fig. 6. Law of variation in the coordinate x  
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7. Law of variation in the coordinate 
y
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Fig. 8. Law of variation in the rotation angle   

Calculations have been done at 0t 2sec , 

0 152 05rad/sec.   ( 0n 1452 prm ). In this case 

resonance oscillations are realized near the fifth natural 
frequency of the mechanism ( 5 24 2Hz.  ),when the 

coordinates vary significantly 
1x , 

1y  and sufficiently 

significant varies in the coordinates x , y ,  . Such regime 

leads to a quick parts mating, which is consistent with the 
experiments. 
 
 
 
 
 
 
 
 
 
 
Fig. 9. Law of variation in the rotation angle 

1x  

 
The spatial motions of some characteristic points of the 
foundation of the mounted part (Fig. 10; the coordinates are 
given in millimeters) are shown in Fig. 11-13. 
 
 
 
 
 
 
 
 
 
 
Fig. 10. Location of characteristic points of the foundation of the 
mounted part 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 11. Trajectory of point motion 1M  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 12. Trajectory of point motion 2M  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 13. Trajectory of point motion 3M  

Conclusions 
1. A complex mathematical model of dynamic processes in 

vibrational mounting device for assembly robot is 
created. Such mathematical model makes it possible to 
research the starting process of the mechanism, the 
steady-state regimes and spatial motions of any points 
of the assembling part. 

2. A rational model for the motor with unbalance at 
controlled starting is proposed, which lead to spatial 
oscillations of the grab and part. 

3. With a help of ideas of the sensitivity theory the algorithm 
for parameters synthesis of the device by using natural 
modes of oscillations is developed.  

4. Calculation and experimental researches of free 
oscillations of the particular device for the parameters 
correction have been done. 

5. The results of the parameters synthesis of the device for 
mounting a particular part are presented. 

6. The results of calculation researches of the dynamic 
processes during starting and on steady-state regimes 
of the mechanism at the part mounting are given.  

7. The spatial motions of the characteristic points of the 
mounted part have been researched.  

8. The research results are perspective in simulation and 
improvement of a similar designs.  
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