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Abstract: This paper presents numerical methods for solving the Modified Filter Algebraic Riccati Equation (MFARE) for synthesis of H-infinity fault 
detection filters.  Two methods are presented, namely the gamma-iteration and then rewriting the MFARE in Linear Matrix Inequalities (LMIs) and 
casting it as a convex optimization problem. Each algorithm has to ensure the condition for a global convergence and also has to deliver an optimal 
solution. Not at least the computational cost has to be as small as possible.  
 
Streszczenie. Zaprezentowano metodę numeryczną rozwiązywania równania MFARE (Modified Filter Algebraic Riccati Equation). Badano dwie 
metody – iterację gamma i przepisywanie równania w postać Linear Matrix Inequantities. Metody numeryczne rozwiązywania równania MFARE 
do filtrów typu H-infinity 
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Introduction 
Diesel engines have become more complex and 

powerful in the past decade, moreover lots of the 
mechanical functions are being replaced by electric and 
electronic devices, which are controlled by the ECU. In 
order to ensure the strict environment policies, these 
devices and the ECU as well have to make sure the 
reducing of fuel consumption and the emission of pollutant 
species. On the top of this the ECU is also equipped with 
reliable fault diagnose system to detect possible actuator, 
sensor and component failures in the engine. The subject of 
our investigation is a robust model-based fault detection 
filtering of faults in the air-path of diesel engines. When 
designing a H-infinity filter, the filter gain can be obtained by 
solution of a Modified Filter Algebraic Riccati Equation 
(MFARE), which is one of the central and most difficult 
tasks in the synthesis, see e.g. in [1], [2], [3] and [4]. One 
way to get there is an applying gamma-iteration, another 
one, which is more state of the art, is using LMIs. Several 
investigations of robust control have been carried out in the 
past two decades using LMIs, see e.g. [5], [6], [7]. As a 
result, it has been stated, that LMIs are effective and 
powerful tools for handling complex, but standard problems, 
such as a fast computing of global optimum within some 
pre-specified accuracy. As even it is to be done in our case, 
solving the H-infinity optimization problem to specify the 
filter.  

This paper is organized as follows: after the introduction, 
in Section II we shortly revisit the problem of H-infinity 
optimization and describe the MFARE. In Section III 
MFARE is converted to an LMI as an optimization problem. 
In Section IV an algorithm called gamma-iteration is 
implemented to solve the MFARE, then it is formulated as a 
linear objective minimization problem using LMI. 
 
Deriving the Modified Filter Algebraic Riccati Equation 
for robust H-infinity detection filtering 
The optimal H-infinity detection filtering problem 
 According to [8], the linear time-invariant system (LTI-
system) subjected to worst-case effect of modelling 
uncertainties, external disturbances and the effect of 
unknown faults, can be represented in state space form as 
follows: 
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 In (1) x ߳ Թ௡, y ߳	Թ௣, u ߳ Թ௠ . A, B, and C are 
appropriate constant matrices. It is assumed, that (A, C) is 
an observable pair. ܤ఑	=ൣܤ௪,ܮ୼൧ is the worst-case input 
direction and ߢሺݐሻ ∈ 	 ,ሾ0	ଶܮ ܶሿ is the input function for all 
ݐ ∈ Թା representing the worst–case effects of modelling 
uncertainties and external disturbances. It is to note, that 
the equation does not include parametric uncertainty [8]. 
The cumulative effect of a number of k faults appearing in 
known directions Li of the state space and is modelled by an 
additive linear term, ∑ܮ௜ߥ௜ሺݐሻ	. Li ߳ Թ௡௫௦	 and 	ߥ௜ሺݐሻ are the 
fault signatures and failure modes respectively. ߥ௜ሺݐሻ are 
arbitrary unknown time functions for ݐ	 ൒ ௝௜ , 0ݐ ൑ ݐ ൑ ܶ, 
where ݐ௝௜ is the time instant when the i-th fault appears and 
௜ߥ ൌ 0, if ݐ	 ൏ ሻݐ௜ሺߥ	 ௝௜ . Ifݐ ൌ 0, for every i, then the plant is 
assumed to be fault free. Assume, however, that only one 
fault appears in the system at a time [8]. 

Based on the LTI-system model in (1), the state 
estimate can be obtained as 

 

(2) 

x( ) ( ) ( ( ( ) ( ))) ( ) ,

y( ) ( ) ,

z(t) C ( ) ,z

t Ax t K C x t x t Bu t

t Cx t

x t

   



  
 
 

 

 

where ݔො ߳ Թ௡	represents the observer state, ݕො ߳ 
Թ௣represents the output estimate, z ߳	Թ௣ denotes the output 
signal and ̂ݖ ߳ Թ௣represents the weighted output estimate. 
K is the observer gain matrix and Cz is the constant 
estimation weighting. 
 

The filter error system for (2) can be formulated as 
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In (3), ݔ෤(t) and Ԫ(t) are the state error and weighted 
output error, respectively, defined as 

(4) x( ) ( ) x( ) , ( ) ( ) ( )t x t t t z t z t      

Note that in presence of faults, the estimation error does 
not converge asymptotically to zero, but converges 
asymptotically to a subspace which is different from zero 
[8]. 
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In the following we have to choose the filter gain, by 
minimizing the magnitude of the effects of perturbations on 
the output of the filter, which has to maximize the 
magnitude of the transfer function from failure modes to the 
filter error.  

 

Solution to a H-infinity filtering 
The performance measure for H-infinity filtering 

considered as a quadratic cost function is defined as 
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where ω ߳	Թ௣		denotes the process disturbance in ܮଶ	ሾ0, ܶሿ 
and ߛ ൐ 0 is a positive rational constant.  
 

The quadratic cost function has to be minimized as 
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The performance can be formulated as a min-max 
problem, which is a trade-off between the worst-case 
disturbance ߢሺݐሻand the ܮଶ norm of the filter error Ԫሺݐሻ ൌ
ݖ	 െ  ଶ.  That is, minimizing the H-infinity norm of theܮ on ݖ̂
transfer function, denoted by Hߝκ , of the worst-case 
disturbance to the filter output. The worst-case performance 
measure is given by 
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The filter gain K can be obtained by solving a linear-
quadratic optimization problem, using the procedure 
presented below (see also in [8]).  

With substitution of the decision variable Y	∈ ܴ௡௫௡, 
which is a positive definite matrix, the observer equation 
can be written as  
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From the bounded-real lemma, we have ‖ܪఌ఑‖ஶ ൏  if  ߛ
and only if there exists ܻ ൒ 0 such that the MFARE is 
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The algorithm, which is used to find an optimal solution 
for Y, iteratively reduces the ߛ until Y has no longer a 
positive definite solution. Note that the ߛ௠௜௡ obtained this 
way is within a given arbitrarily small tolerance ߝ ൐ 0.  

After solving equation (9) and getting the solution for Y, 
the filter gain can be obtained as 

(10)                                          CTK Y  

Using the ࢔࢏࢓ࢽ	the detection threshold of the filter can 
be given as                                                                                                                                     

(11)                                 min 2
( )zC    

Note that the failure modes, which have the magnitude 
smaller than that of the detection threshold, cannot be 
detected by the filter. 

Solving the MFARE with LMI 
The reason for dealing with LMIs is that, that a lot of 

problems subjected to the control theory can be cast as 
convex optimization problem. What is more, most of them 
can be converted to a standard LMI problem such as a 

computing of global optimum with some pre-specified 
accuracy, as even if it is to be done in our case, the solving 
the H-infinity optimization problem. The main benefit of the 
LMI formulation is that it defines a convex constraint with 
respect to the variable vector. For that reason, it has a 
convex feasible set which can be found guaranteed by 
convex optimization. A detailed survey about the LMIs can 
also be found in the mathematical literature, see e.g. in [9], 
[10] and also in textbooks for control engineering e.g. in 
[11], [12], [13] and [14].    
 

Standard problems involving LMIs 
A linear matrix inequality is a matrix inequality of the 

form 
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where ݔ ∈  ௠ is the vector of decision variables, andࡾ
௜ܨ ൌ ௜ܨ

் ∈ ,௡	௫	௡ࡾ ݅ ൌ 0,⋯ ,݉ are  symmetric matrices . 
Let ܣሺݔሻ, ܤሺݔሻ and ܥሺݔሻ be symmetric matrices that 

depend affinely on ݔ	߳	Թ௠. Then the standard LMI problems 
can be formulated in three different ways (see e.g. in [13]): 
1. Feasibility problem with the task of finding a 
solution for decision variable ݔ so that the constraint 
sufficient.   
 

ሻݔሺܣ   (13) ൏ 0       
    

2. Linear objective minimization i.e. searching for x 
which minimizes the linear function subject to an LMI.  

That is 
minimize cT	ݔ	 

(14)      subject to ܣሺݔሻ ൏ 0.   
 

3. Generalized eigenvalue minimization problem i.e. 
minimizing the maximum generalized eigenvalue of a pair of 
matrices, that depend affinely on a variable, subject to an 
LMI constraint.  
The task is 

         minimize	ߣ 
         subject to an LMI constraint: 

 

ሻݔሺܣ	                                      	൏ 	λܤሺݔሻ  
ሻݔሺܤ	           (15) 	൐ 	0   

ሻݔሺܥ ൏ 0	. 
              

Rewriting the MFARE in LMI  
Unfortunately most of the control synthesis problems are 

not formulated as an LMI, but the nonlinear (convex) 
inequalities can be converted to an LMI form using the 
Schur complements lemma (Boyd et. al. in 1994) see in 
[13].  

According to this lemma the expressions (16) and (17) 
are equivalent. 
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ܳሺݔሻ ൌ ܳሺݔሻ், ܴሺݔሻ ൏ 0, and ܵሺݔሻ depend affinely on ݔ.  
 

On this way the set of nonlinear inequalities in (17) can 
be represented as the LMI in (16). 
 Back to our problem, we have to solve the MFARE 
as                  
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To transform (18) into an LMI, at first we rewrite it in 
form of inequalities. For this let ܴ ൌ ܻିଵ, so we get 
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Applying the Schur complement lemma (17) for (19) 
yields to  
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Finally by using the Schur complement lemma in (16) 
we obtain the LMI for the MFARE as  
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which has a solution ܴ ൌ ்ܴ ∈ Թ௡	௫	௠ for ߛ ൐ 0. 
Consequently we can solve the MFARE by minimizing ߛ 

with respect to ܴ ≻ 0 subject to (21), that is  
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Computing the optimal solution using the Hamiltonian–
matrix   

In most cases it is possible to solve the Algebraic Riccati 
Equation also through similarity transformation of the 
Hamiltonian-matrix, see e.g. in [15].  Although this method 
is not for solving the MFARE as an optimization problem, so 
it won’t lead to an expected result, it may be useful to 
evaluate the result obtained via the optimization for fixed ߛ.  
According to this idea we seek the optimal solution of the 
MFARE for fixed ߛ ൐ 0.  

The Hamiltonian-matrix corresponding to the MFARE 
can be derived as:   
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where the term is placed in the middle is the 
Hamiltonian-matrix: 
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which has no eigenvalue on the imaginary axis. 

The method is described as follows [15]. Build the 
ሺ2݊, ݊ሻ matrix ܸ, which contains the eigenvectors 
associated to the eigenvalues with negative real parts 
(stable invariant subspace) of the Hamiltonian-matrix as 
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thus it is valid that 
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By multiplying (26) with ଵܸ
ିଵ from the right side, the equation 

can be formulated as 
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Then multiplying (27) from the left side with ሾ ଶܸ ଵܸ
ିଵ	ܫሿ, so 

obtained 
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By comparing (27) to (23) and then recognizing the 
similarity, the matrix ܻ can be calculated as 

                                   (29)  
1

2 1 .HY V V   

It can be stated, that the solution for ܻ can easily be 
obtained from the eigenvectors  ଵܸ	, ଶܸ of the Hamiltonian-
matrix of the MFARE. The method can be used in 
evaluating the optimal solution obtained by solving the LMI, 
for instance. 
 
Calculation of the filter gain based on the LTI -model of 
the air path of the diesel engines 

By the investigation of fault detection filtering we are 
interested in the efficiency and robustness of the optimal 
solution for the filter gain. To this aim, two different methods 
for solving MFARE are compared. First the algorithm 
gamma-iteration is implemented, then the MFARE is 
formulated as a LMI and solved it as a linear objective 
minimization problem.  
 

LTI-model for the air path of diesel engines 
As mentioned in the introduction, the robust fault 

detection filter design, that we apply in our investigation 
requires the using of the LTI-model. Here we refer to a 
simplified nonlinear model of the air path which was first 
suggested by Jankovic and Kolmanovsky in 1998 [16] and 
later by Jung [17] for the purpose of robust control of the 
diesel engines. In our earlier investigation [18] we have 
already linearized this model around a specified operating 
point (Herceg, 2006) [19].  For the sake of simplification, we 
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have considered a fuelling of diesel oil as a constant input 
and not as disturbance, furthermore the disturbance was 
modelled as a fluctuating change of the engine speed. 

As a result we derive the following LTI-model at the 
chosen operating point [18] as     
(30)               
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where A, B, C and Bω are appropriate constant matrices, Bω  

is the matrix for the effect of worst-case disturbance acting 
on the system. 
 

Solution of the MFARE by a gamma-iteration algorithm 
This section discusses a conventional numerical method 

called gamma-iteration to get an optimal solution of 
MFARE. It has to be noted, that this method is often 
referred to, see e.g. in [1], [2] and [20], [21], but we have not 
found any algorithm about it. This has been the motivation 
for its description.   

For the start of the explanation, the estimation weight of 
the filter is chosen arbitrarily according to the methodology 
described in [8] as 

(31) 
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The MFARE is written again as   
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Arranged it for the use of the MATLAB function care [22], 
(32) becomes: 
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Note that the function care is basically used for solving 
the H-infinity Riccati Equation for purpose of control 
synthesis. However, according to the principle of duality 
between controller and observer the care function can be 
parameterized to be used it for a filter synthesis in the form: 
 [Y L Gr report] = care (A', CC, Bκ* Bκ', Rcare , 'report'), 

where ܥܥ ൌ ሾܥ௭்  .ሿ்ܥ

The function care returns the optimal value for the 
decision variable, denoted by Y.  

Of course the Rcare - matrix contains ߛ, but this has a 
constant value for a specified level for that. It results that 

the function care cannot be directly used for a quadratic 
minimization problem, that is, the value of ߛ	is to be 
iteratively reduced and the decision variable minimized. In 
this manner in order to get the ߛ௠௜௡	value, and so the 
corresponding optimal solution for Y, we implemented an 
algorithm called gamma-iteration in which an interval 
halving method is used iteratively. The algorithm reduces 
the value of ߛ until Y has no longer positive definite solution. 
The ߛ௠௜௡, which is reached, is within the limits given by an 
arbitrarily small tolerance ߝ ൐ 0.  

The gamma-iteration algorithm can be formulated as 
follows: 
 The inputs for the method are: the  A, Bw, C, Cz 
matrices, which define the LTI-system, eps as the relative 
accuracy of the solution, maxgamma as the right limit of the 
interval (the left limit is zero). 
 The second variables:  a, b and i. They stand for 
assignation of interval and counting cycle, respectively. The 
gamma as step size (midpoint), the minigamma variable, 
which contains the value of gamma at the end of an 
iteration. The Lambda vector contains the eingenvalues of 
the solution. 
 The outputs are:  the matrix Y as a positive definite 
decision variable, the mingamma, which contains the 
gamma value when the iteration is finished. 

Each iteration performs the following steps: 
1. Calculate gamma, the midpoint of the interval, 

which is assigned by a and b.  That is gamma = 
a+(b-a)/2; 

2. Call the MATLAB function care which returns the 
matrix Y and the “report”; 

3. Calculate the eigenvalues of Y, called Lambda; 
4. If the convergence criteria of the iteration are not 

satisfied, namely:  
a. Y is NOT positive definite that is 

prod(Lambda)<=0   
or  

b. The associated Rcare – matrix in (33) contains 
gamma had eigenvalues on or very near the 
imaginary axis; 

Then the upper and lower bounds of interval are 
changed; 
Otherwise the value of gamma is saved, that is 
minigamma = gamma and the iteration is 
continued; 

5. Examine whether the new interval assigned by b-a 
reached the relative accuracy of the solution - 
called epsilon: 

If not, the iteration is repeated;   
If yes, the iteration is finished and the filter gain is 
calculated based on the previous value of minigamma, that 
is mingamma.  

The algorithm is implemented in MATLAB the example 
is based on the LTI-system in (30) and its script is shown in 
[23]. 

The input matrices were: 
 
 

 
(34) 
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0 141.6784 0

B

 
      
  

5.2643 4.7316 28.5021

50.7697 156.9827 0 ,

0 0.4287 9.0909

A

 
   
  
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5

1 0 0 5 0 0

0 1 0 , 0 5 0 .

0 0 3.924 10 0 0 25

47.7946 0 0

B 466.3408 0 0 ,

0 0 0

zC C





   
       
      

 
   
  

 

Further conditions were: maxgamma = 1100 and eps = 
0,01. 

By performing the ߛ-iteration repeated it 21-times the 
optimal value of ߛ௠௜௡ ൌ 	4.9698	 is obtained. With (10) from 
Y the corresponding filter gain given as 

 (35)  

257.2236 .2216

.2216     699.

  -39  -0.0000

   -39 0.0000 .

-0

2298  

.6744 .7934  1   0.0000

K

 
   
  

 

Note that in the steps 8,11,13 and 20 we did not get 
solution because the care returned with a report = -1, which 
means that the associated Rcare - matrix had its eigenvalues 
on or very near the imaginary axis, which resulted in failure, 
see in [22]. According to the interval halving algorithm, in 
these steps the upper and lower bounds of the interval are 
changed in order to keep the eigenvalues away from the 
imaginary axis. 

In order to prove the filter performance for disturbance 
attenuation, the transfer function of the disturbance to a 
filter residual for the obtained filter gain K is 

(36)    
1H (s) (sI A KC) B .ZC 
    

The evolution of the disturbance attenuation during the 
iteration steps can be observed on the value of 	‖ܪఌఠሺݏሻ‖ஶ , 
which was calculated in MATLAB and plotted in Fig. 2. 

 

Fig.2. Changing 	‖ܪఌఠሺݏሻ‖ஶ value as a function of gamma values 
during the iteration 
 

The optimal value obtained at the end of the iteration is 
for 	‖Hகனሺsሻ‖ஶ ൌ 3.3737. 
 

Evaluating the optimal solution of MFARE using the 
Hamiltonian-matrix 

It is possible to verify the solution for the decision 
variable by calculating the eigenvectors of the Hamiltonian-
matrix of MFARE as it was explained in Subsection 3.3. 
 

The resulting Hamiltonian-matrix for MFARE in case of  
γ୫୧୬ ൌ 4.9698 is 
 
 

(37) 

5

 -0.0001 0.0005 0.0000 0.0000 0.0000    0.0000

 0.0000 -0.0016 0.0000 0.0000 0.0000    0.0000

0.0003  0.0000 -0.0001 0.0000 0.0000    0.0003
10

 -0.0228 0.2229 0.0000 0.0001 -0.

0.2229 -2.1747 0.0000 

0.0000 0.0000 0.0000

H  .
0000 -0.0003

-0.0005 0.0016 0.0000

0.0000 -0.0000  0.0001

 
 
 
 
 
 
 
 
 

 

At first, we calculate the eigenvalues and the 
corresponding eigenvectors of the Hamiltonian-matrix via a 
similarity transformation. The resulting matrix, containing 
the eigenvalues obtained as  

 (38) 




( ) 150.0393, -150.0393,6.8273,

6.8273, 0.4622, -0.4622, -6.8273 .

idiag H diag 
 

Secondly, we have to build a ሺ2݊, ݊ሻ matrix for the ܸ, 
which contains the eigenvectors of the Hamiltonian-matrix 
corresponding to the eigenvalues with negative real parts 
(25). 

The submatrices of V, which contain the eigenvectors, 
are: 

(39) 

1

2

0.0005 0.0039 0.0029

- 0.0014  0.0001 -0.0003 ,

0.0004 0.0062 -0.1194

0.1749 0.9986 0.8475

-0.9846 -0.0516 -0.5171 .

-0.0027 -0.0023  -0.0139

V

V

 
   
  
 
   
  

 

Let ுܻ denote a solution calculated using Hamiltonian-
matrix, which has a solution  

(40) 1
2 1

258.0838 -32.9691 -0.7468

-33.7848 691.7261 1.7722

-0.7809 1.6763 0.0932
HY V V 

 
    
  

 

 
From the gamma-iteration in Subsection 4.2 we got an 

optimal solution as  
 

(41) 

257.2236 .2216

.2216     699.2

 -39   -0.7934

-39 .6744 .

-0.

298 1 

.6744 7934  1   0.0934

Y

 
   
  

 

 
The matrices of the absolute –and relative faults 

between the two solutions are   

(42) 

  1

0.8602    6.2525    0.0466

5.4368   -7.5037    0.0978 ,

0.0125    0.0019   -0.0002

0.0058    0.0083    0.3995

0.0237   -0.0129    1.4808 .

0.0000    0.0000   -0.0019

H

H

Y Y

Y Y Y 

 
    
  
 
    
  

 

It can be stated, that the matrices  ுܻ  and Y are slightly 
different. This leads to the conclusion of plausibility of an 
optimal solution Y obtained by the gamma- iteration. 
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Getting the solution for the MFARE using LMI  
In Section 3 we introduced the method for finding the 

optimal solution for MFARE implemented analytically as an 
interval halving algorithm. However, the task of the 
minimization results in the task of computing a system of 
matrix equations which is not always convex [8].  
For this reason, let us now consider the problem of finding 
the optimal solution for the filter gain by solving of MFARE 
formulated as a LMI. 
To handle it, several commercial software tools can be 
chosen. In this study the LMI Control Toolbox of MATLAB 
has been used, which provides a set of convenient 
functions to solve problems involving LMIs [24].  
 

Generally, the solution of LMIs is carried out in two 
stages in MATLAB. At first, the decision variables of the LMI 
are defined, then it is defined the system of LMIs based on 
these decision variables. These are mostly represented in 
matrix form. In the second stage, the optimization problem 
is solved numerically using the chosen solvers as it is 
explained in Section 3.1. 

In our case study the LMI in (21) is formulated as a 
linear objective minimization problem. That is, the task is to 
minimize a linear function of ݔ subject to an LMI constraint 
as  

(43)   min : ( ) 0 .T

x
c x F x   

That is  

(44)           
2

min

. . 0

0 0.

0

T T T
z

z
T

s t R

RA A R C C C RB

C I

B R I










 
   

    
   



 

The Matlab script for the linear objective minimization 
problem in (44) is shown in [23]. 

 
Comparing the performances of the LMI and the 
gamma-iteration   

The efficiency and robustness of the optimal solution are 
interesting aspects of the fault detection filtering problem. 
Consequently two different methods for solving MFARE are 
compared, namely the LMI formulated as a linear objective 
minimization problem and the numerically implemented 
gamma-iteration.  

The results of the MATLAB simulations are shown in 
Table 1. 

 

Table 1. Comparison of the different solutions for the MFARE 
Performance-measure LMI as an linear objective minimization 

problem 
gamma-iteration 

 ௠௜௡ 4.9704 4.9698ߛ

K 278.80    -52.70       0.0000 
-52.70     1308.4      0.0000 
-0.500      0.600       0.0000 

257.2236   -39.2216   0.0000 
-39.2216    699.2298  0.0000 
 -0.7934     1.6744      0.0000 

A-KC’ -284.100    57.400    28.500 
              103.500   -1465.40  0.0000 

0.500      -0.200      -9.100 

  -262.4879    43.9532    28.5021 
           89.9913    -856.2125  0.0000 

   0.7934      -1.2457     -9.0909 
eig(A-KC’) -1470.400 

-279.100 
-9.0 

-862.8079 
-255.9683 

-9.0152 	
 ሻ‖ஶ 4.4345 3.4047ݏఌఠሺܪ‖

Number of the iteration 9 21 
Computation cost (sec) 0.1 1 

 
The matrix of the absolute fault between the two 

solutions:   

(45)  

 21.5764  -13.4784   0

-13.4784  609.1702  0 .

 0.2934   -1.0744      0
LMI gK K

 
    
  

 

From the simulation results of the comparison of the 
two different methods it can be concluded that each one 
gives an optimal solution. To be more precise the 
minimization algorithm has been applied until the 
satisfaction of the positive definiteness. As it can be seen in 
the Table 1, the smallest ߛ௠௜௡ value could be reached 
using the simple gamma-iteration, but the result obtained 
on this way is just slightly different from the result obtained 
using LMI. The maximum absolute fault between the two 
solutions was 21.5764.   However, the higher filter gain 
obtained in case of LMI suggests that the filter may be 
faster but less effective against disturbance. On other 
hand, by the gamma-iteration the burden of successive 
numerical computation of the quadratic matrix equality and 
repeated calling the function CARE as well resulted in a 
significant computation cost, as it can be seen in Table 1. 
We have found the solutions by running the codes in 

MATLAB CPU a PC with Intel® Celeron® CPU B815 (1.60 
GHz). From these results it is visible that modern 
computation methods as a LMI are more capable to handle 
such complex mathematical problems as a solution of the 
MFARE.  

However, the algorithm of gamma-iteration makes it 
possible to examine the solution for MFARE during the 
iteration. For example, it is easy to analyse the impact of 
gamma value on the number of iteration steps or the 
impact of changing of the disturbance on the optimal 
solution. One can easily perform experiments and get 
answers e.g. to the following questions: How does the 
iteration converge? How do the eigenvalues of the decision 
variable change? How close are they to the imaginary 
axis? How are they distributed? How does the filter gain 
change by reduction of the value of gamma? All these 
issues can be easily examined, step by step during the 
iterations, which can also be useful for better 
understanding the theory of H-infinity filtering.   

 
Conclusion 

In our paper we have performed a benchmark based on 
two concepts for solution of the MFARE. First the algorithm 
gamma-iteration was implemented, then the MFARE was 
formulated as a LMI and solved it as a linear objective 
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minimization problem. From the simulation results of the 
LMI, it can be concluded, that both methods, the gamma-
iteration and the LMI formulated as a linear objective 
minimization problem, are capable for solving the MFARE. 
Moreover, they deliver only slightly different results, but the 
LMI lead to an optimal solution much faster in about 
100ms. However, the analytically implemented gamma-
iteration, gives much more flexibility to examine the entire 
minimization process. For this reason we propose using 
both approaches, that is, using the gamma-iteration in the 
preliminary stage in order to perform an analysis and using 
LMI either in the stage of the synthesis to better perform 
the implementation. Our further work will include an 
extension this LMI problem to use it for switched linear H-
infinity filtering.  
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