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Substantiation of consolidated inertial parameters  
of vibrating bunker feeder 

 
 

Abstract. The article describes the method of installing the inertial parameters of a vibration bunker feeder. The emphasis is on the fact that for the 
complete calculation of the vibration bunker with propeller-shaped movement of bodies, implemented on the basis of hyperboloid torsion, it is 
necessary to know precisely the consolidated mass or the sum of the moment of inertia, which in the future are used to determine the coefficient of 
stiffness of the elastic node. For this purpouse we propose a method for establishing analytic dependencies for combined inertial parameters. The 
results were verified on a pilot sample of a vibration bunker feeder. 
 
Streszczenie. W artykule opisano sposób ustalania parametrów bezwładnościowych wibracyjnego podajnika bunkrowego. Nacisk położono na fakt, 
że do pełnych obliczeń bunkra wibracyjnego z ruchem ciał w kształcie śmigła, realizowanym w oparciu o skręcanie hiperboloidalne, konieczne jest 
dokładne poznanie masy skonsolidowanej lub sumy momentu bezwładności, które służą do wyznaczania współczynnika sztywności węzła 
elastycznego. Wyniki zweryfikowano na próbce pilotażowej wibracyjnego podajnika bunkrowego. (Weryfikacja skonsolidowanych parametrów 
inercyjnych wibracyjnego podajnika bunkrowego). 
 
Keywords: vibration bunker feeder, hyperboloid torsion, consolidated mass, combined moment of Interia. 
Słowa kluczowe: wibracyjny podajnik bunkrowy, skręcanie hiperboloidalne, masa skonsolidowana, łączny moment bezwładności. 
 
 
Introduction 
 Vibrating bunker feeders are commonly used to 
automate production processes. They are widely 
manufactured by different world enterprises: Spirol 
International Corporation, Moorfeed Corporation A Division 
of Executive Automation Systems Inc., NTN Corporation.   
[1-5]. Two main types of vibration bunker feeders can be 
distinguished: with directed (fig. 1) and independent (fig. 2) 
oscillations. 
 In vibration bunker feeders with independent (elliptical) 
oscillations, the direction of throwing is provided by force 
disturbance at two independent coordinates. Therefore, for 
determining the coefficients of stiffness of elastic nodes, we 
use well-known expressions for the consolidated mass at 
rectilinear oscillations or the consolidated moment of inertia 
of the system at angular oscillations [6-10]. 
 
a) 

 
b) 

 
Fig. 1. Vibrating bunker feeders with guided (screw-like) oscillations 
in which the bowl is made cylinder-like (a) and a conical-like (b) 
 
 In vibration bunker feeders with propeller oscillations, 
the direction of throwing is ensured due to sloping elastic 
elements. In such structures, the propeller movement 

involves two: rectilinear and angular. Therefore, in order to 
determine the stiffness coefficient of an elastic node on the 
basis of a hyperboloid torsion, it is necessary to know the 
consolidated mass or the summed moment of inertia at 
propeller-shaped oscillations, which themselves contain, 
respectively, the proportion of the consolidated moment of 
inertia of the system at angular oscillations or the 
consolidated mass in rectilinear oscillations [11,12,16]. 

 
Fig. 2. Vibrating bunker feeder with independent (elliptical) 
oscillations 
 

 In the technical literature you can find methods for 
calculating vibration bunker feeders parameters. One of the 
defining parameters is the consolidated mass or the 
summed moment of inertia of the oscillatory system, the 
motion of which is carried out on a propellant trajectory. It is 
impossible to calculate the vibration bunker parameters 
precisely, without knowing these parameters [13,14,17]. 
 
Analysis of literary sources and problem statement 
 Thus, in the literature [6-10], analytical dependences are 
provided for establishing a consolidated mass or moment of 
inertia of a vibrational system, the movement – of which is 
carried out on a screw-driven trajectory. According to [6,18], 
the consolidated mass in such a motion is defined as 
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is a combined moment of inertia during angular oscillations 

1m , 2m  and 1J , 2J  - respectively, the masses and 

moments of inertia of the first and second oscillatory bodies; 
z- resonant debugging;  - angle of tilt of elastic elements 
relative to the vertical plane;  - angle, which is set 
according to the dependence 
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where R  – the radius of the location of the elastic elements 
of the hyperboloid torsion; l - the length of the elastic 
element. 
 According to [7], the mass is defined as 
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 In [8] the following expression is given 
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where: r – the mass inertia radius 1m  (bowl). 

 According to [9] 
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 Therefore, there is no uniqueness in how to establish a 
consolidated mass of oscillatory system, the movement of 
which is carried out on a propellant trajectory. 
 
Purpose and tasks of research 
 As you can see, there are inaccuracies in the analytical 
expressions for the consolidated mass and the consolidated 
moment of inertia of the oscillatory system in propeller-
shaped motions, which makes it impossible to establish its 
parameters. In addition, in literary sources, there are 
practically no examples of calculations that would clearly 
demonstrate the application of the presented techniques, 
the use of which requires both experience and relevant 
knowledge [15,18,20,21]. 
 Therefore, for the final establishment of analytical 
expressions, we will deduce their output. It requires: 
1. To consider the basic schemes of two-mass oscillation 

systems based on an elastic node in the form of a 
hyperboloid torsion. 

2. To make mathematical models of two-mass oscillation 
systems. 

3. To establish by mathematical models analytical 
dependences for the consolidated mass and the 
consolidated moment of inertia of the oscillatory system, 
carrying out the propellant motion. 

4. To confirm experimentally the obtained results. 
 
Methods of establishing analytical dependences for the 
consolidated mass and moment of interia of the 
oscillatory system carrying the propellant motion 
 The formation of analytical dependences for the 
establishment of parameters of oscillatory systems is 
carried out by solving a system of linear differential 
equations provided that the transient processes have 

passed and the motion is established. For the compilation 
of differential equations of mathematical models of 
oscillatory systems, we use the energy balance method and 
the Lagrange equation of the second type. Experimental 
confirmation of the results is carried out in a natural way in 
laboratory conditions with the use of measuring equipment 
[17-19]. 
 
Method of determination of the consolidated mass and 
the moment of interia of the vibrational system, the 
movement of which is carried out on a screw-shaped 
trajectory 
 It is known that the coefficient of rigidity during tension 
(compression) through the consolidated mass for rectilinear 
motion (fig. 3) and the coefficient of rigidity for a system that 
performs angular (torsional) oscillations is determined 
based on expressions (2) and (3), namely: 
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where:   - the peak frequency of forced oscillations in the 
established operating modes. We note that the 
establishment of the coefficient rigidity value is possible due 
to the fact that we know the analytical expressions for the 
consolidated mass rm  and the consolidated moment of 

inertia rJ . 

 If we consider a two-mass system based on a 
hyperboloid torsion (fig. 4), an unknown parameter for us is 
the coefficient of stiffness of the elastic node. So, if the 
hyperboloid torsion is driven by the vertical force of 
diturbunce F , we do not know how to determine the 
stiffness 12c  of compression (tension); if it twists with 

twisting moment tМ - unknown torsion stiffness 12tc . 

 How can we explaine it? The fact that in the first case it 
is not enough to determine the coefficient of rigidity only 
through the consolidated mass rm , and in the second one 

only through a rotational moment of inertia rJ , since the 

oscillating masses are in the propellant motion. The 
formation of the value of the consolidated mass is 
influenced by the values of moments of mass inertia, and 
the combined moment of inertia of such a vibrational 
system includes the mass. 
 

 
a) b) 
Fig. 3. Oscillation systems with rectilinear (a) and angular (b) 
movement 
 
 We analyze the two-mass vibration system of a vibrating 
bunker feeder which mass is driven by the vertical force of 
disturbance F  (fig. 4a). For such a scheme, we need to 
know the expression for the consolidated mass r htm  so that 

according to the formula 
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similar to (8), to establish the coefficient of hardness for 
compression (stretching) unknown to us. 
 

 
a)  b) 
Fig. 4. An oscillation system based on a hyperboloid torsion, driven 
by the force of disturbance (a) and torque (b), and carries a 
propeller motion, where iX  and i , respectively, the amplitudes of 

bodies in linear and angular oscillations 
 

 
Fig. 5. An oscillation system based on a hyperboloid torsion, 
reduced to single weight 
 
 To simplify the presentation of the material, we reduce 
the two-mass system of the vibration bunker feeder to the 
single-mass (fig. 5), tightly gripping its lower mass, taking 
into account its inertia in the parameters of the upper mass. 
In essence, in motion there is one vibrational body which 
inertial parameters are determined according to (2) and (3). 
 Coordinates of relative motion rx  and r  are 

interconnected. One coordinate is set through another, 
according to the ratio 
(11) cos tanr rx R   , 

that is, a generalized coordinate can only be either rx  and 

r . To establish the consolidated mass in the propellant 

motion, we formulate an energy balance equation for a 
generalized coordinate rx , reducing the rotational motion r  

by linear displacement. 
 In the process of oscillations, the balance of kinetic  
and potential   energy, which can be represented by 
equality    , is always maintained. The potential energy 
under the deformation of the hyperboloid torsion by linear 

rx will be 

(12) 
2
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2
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and the kinetic energy will consist of motions in coordinates 
and will be 

(13) 
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Using (11) the angular velocity in coordinate r  is 

/ ( cos tg )r rx R    . Given this and equating (12) and 

(13), we obtain 
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 Equation (14) in the amplitude values of displacement 

rX and velocity rX will be written as 
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from where, taking into account resonance debugging z  
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. 

 By comparing (10) and (16), we determine the 
consolidated mass of the oscillatory system based on the 
hyperboloid torsion, which works on compression under the 
action of the vertical force of disturbance F  (diagram in fig. 
4, a) 
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 Using (16) and (17), the intrinsic frequency of the 
system based on the hyperboloid torsion, given through the 
consolidated mass will be 
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 For a vibrational system based on a hyperboloid torsion, 
driven by a torque tM  (scheme in fig. 4, b), the energy 

balance equation will look like 
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where, carrying out the transformations are identical to the 
above, the combined moment of inertia 
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 So, the value of torsion r12c at torsion moment is 
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and the actual frequency of the system based on the 
hyperboloid torsion, fed through the summed moment of 
inertia is defined as 

(22) 12 12
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. 

 We specified expressions for setting of the consolidated 
mass and moment of inertia. The combined mass for the 
hyperboloid torsion can also be established considering the 
two-tone design, without reducing it to single-mass (fig. 4a). 
To do this, we construct differential equations of free 
oscillations of the system by generalized linear coordinates 

1x  and 2x . 

 The kinetic energy of the system is given by (13) 
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and potential energy 
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Let's introduce the designation cos( ) tan ( )R    . 

After performing the differentiation (23) and (24) and 
substituting the results of the well-known Lagrange equation 
of the second type, we obtain a system of differential 
equations 
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 The amplitudes of oscillations 1X  and 2X  and system 

(25) will look like 
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 The frequency matrix (matrix of coefficients for 
unknowns) of the system (26) has the form 
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and its determinant 
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 Equating (28) to zero, the actual frequency of the 
oscillatory system is 
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and consequently, the consolidate mass in the propellant 
motion of bodies is 
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 Similarly, it is possible to deduce the summed moment 
of inertia for the circuit in fig. 4b. It is equal to 
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Experimental confirmation 
 Let`s consider a two-mass vibrating bunker feeder with 
an electromagnetic actuator, depicted in fig. 6. Its elastic 
knot is realized in the form of a hyperboloid torsion formed 

by three elastic elements of a circular cross-section, 
arranged in a circle in a radius mm90R   and at an angle 

20   relative to the vertical plane. 
 

 

 

Fig. 6. General view of the vibration bunker Fedder 
 

The movement in the vibrational system is carried out by 
the power disturbance in the vertical direction from the 
electromagnetic vibration exciter. In this case, the elastic 
knife is compressed with the appropriate rotation. Thus, 
when calculating the inertial parameter, we consider a 
straight-line motion, in which its degree of inertia is a mass. 
The inertial values of the bowl of the vibration bunker feeder 
have been established (fig. 7). For its dynamic equilibrium, 
a discoid reactive body is used (fig. 8), inertial parameters 
of which are also defined. 
  

 
Fig. 7. Bowl, the mass of which is 1 22.8 kgm  , and the moment of 

inertia relative to the axis of rotation 2
1 0.29 kg mJ  

 
  

 
Fig. 8. The reactive mass, the mass of which is 2 34.4 kgm  , and 

the moment of inertia relative to the axis of rotation 2
2 0.37 kg mJ  

 
 

 Having previously assumed that the working length of 
the elastic elements mm170l   (fig. 6), and the average 

radius of their arrangement in a circle 90R mm , the 

angle   according to (4) is 
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 The combined mass of the oscillatory system based on 
the hyperboloid torsion is determined according to (30). 
Thus, the mass of the bowl 1rm according to (31) 
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and the mass 2rm of the disposable reactive body in 

accordance with (32) 
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 According to (30), the mass of the oscillating system 
carrying the propellant motion is 
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 If we use the expression (17) for calculations, then we 
obtain 
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 Expression (17) is given in [10]. 
 Compared to (17), the expression (30) is more precise 
and gives somewhat more value with the difference to 1%. 
Expressions (17) and (30) are completely convergent on 
boundary conditions: 
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 Let's start calculating the elastic node. As a material of 
elastic elements, we choose steel, the modulus of elasticity 
of the 1st and 2nd kind of which respectively are: 

Pа101.2E 11 ; 108.1 10G Pа  ; . The coefficient of rigidity 

12c on the compression (tension) of the hyperboloid torsion, 

assuming that the frequency of forced 
oscillations 314 /rad s  , and the resonant 

adjustment 0.98z  , according to (10), is 
2 2

7
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182.9 1.88 10 / .
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 The elastic node is realized on the basis of round elastic 
elements. Their number is 3n  . The diameter of the 
elastic element, set in accordance with [11], will be d  

mm13mm0139.0  . 
 Having made the necessary calculations of the elastic 
elements of the hyperboloid torsion for strength, which are 
not given, since this article is not the subject of this article, a 
vibrating bunker feeder was made (fig. 9), which provided 
the appropriate resonance mode of operation [12,14,15]. 
 

 
Fig. 9. Photo of a vibrating bunker feeder 
 
 Its own frequency of oscillations is s/rad3200  , 

which corresponds to the established resonant debugging 
98.0z  . Therefore, we can state the correctness of the 

method of establishing the consolidated mass or the 
moment of inertia of the oscillatory system, the movement 
of which is carried out on a screw-shaped trajectory [13]. 
 
Conclusions 
1. The method of establishing a consolidated mass or 

moment of inertia of a vibrational system, the motion of 
which is carried out on a propeller trajectory, is 
sufficiently clear, which allows us visually to follow the 
stages of the formation of these parameters. 

2. Application during the creation of a vibration bunker 
feeder for the establishment of a consolidated mass of 
oscillatory system, the movement of which is carried out 
on a propeller trajectory, has allowed to provide the 
necessary resonant debugging of the system. It has 
confirmed the reliability of the presented analytical 
expressions. 

3. Both dependencies for the establishment of the 
consolidated mass of the oscillatory system 
(expressions (17) and (30)) or its combined moment of 
inertia (expressions (20) and (33)), the motion of which 
is carried out on a propellant trajectory, can be used 
during engineering calculations, since they give 
practically the same result. 
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