
PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 95 NR 5/2019                                                                                 9 

Blagoja MARKOVSKI1, Leonid GRCEV2, Vesna ARNAUTOVSKI-TOSEVA1,  
Jasmina ANGELEVSKA KOSTADINOVSKA1, Andrijana KUHAR1  

Ss Cyril and Methodius University in Skopje (1), Macedonian Academy of Sciences and Arts (2) 
 

doi:10.15199/48.2019.05.03 
 

Improving Efficiency of Full-Wave Electromagnetic Analysis  
of Grounding Systems Within Homogeneous Earth   

 
 

Abstract. Efficient approach for full-wave modelling of grounding systems is provided. First the electric field integral equations are cast in form that is 
more suitable for grounding analysis and have improved convergence. Then numerical evaluation of the Sommerfeld integrals is substituted by 
bivariate cubic interpolation procedure of the solutions from pre-computed interpolation grid. This procedure provides substantial improvement of 
efficiency of the full-wave electromagnetic analysis of grounding systems, while introducing a negligible error in the results.  
 
Streszczenie. W artykule opisano efektywne podejście do modelowania systemów uziemiających. W pierwszej części podano równania 
różniczkowe opisujące pole elektryczne w formie, która jest bardziej odpowiednia dla analizy uziemienia i pozwala na uzyskanie lepszej zbieżności z 
wynikami eksperymentu. Następnie obliczenia numeryczne całek Sommerfelda zastąpiono dwuzmienną interpolacją sześcienną rozwiązań z 
wcześniej obliczonej siatki interpolacyjnej. Ta procedura zapewnia znaczną poprawę wydajności pełnej elektromagnetycznej analizy układów 
uziemienia, jednocześnie wprowadzając nieznaczny błąd w wynikach. (Poprawa efektywności analizy elektromagnetycznej układów uziemienia 
w jednorodnym środowisku ziemi). 
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Introduction 
The frequency dependent and transient characteristics 

of grounding systems are of interest in many engineering 
analyses related to electric power safety and lightning 
protection, where frequencies of interest range from dc to 
few MHz [1], and electromagnetic compatibility related 
studies, with frequencies of interest up to tens of MHz [2]. 
Different methods for modelling of grounding systems have 
been developed in the past few decades, based on electric 
circuit [3, 4], transmission line [5] and electromagnetic 
theory [6]. Among them, electromagnetic model provides 
most accurate results for all frequencies of interest. 

The most popular electromagnetic model is based on 
antenna theory and solution of electric field integral 
equations by the method of moments (MoM) [6, 7]. One 
difficulty in implementation of the mathematically exact 
solution for the electric field for semi-infinite conducting 
medium in practical problems is the numerical evaluation of 
singular, oscillatory and slow converging Sommerfeld 
integrals, which is numerically unstable and extremely time 
consuming procedure. To circumvent this problem in 
practical analysis, quasi-static [8, 9] or complex-images 
approximations [10, 11] are often employed, however, the 
governing approximations limit their validity to a certain 
upper frequency and system dimensions. Due to the lack of 
efficient full-wave model, the domain of applicability of these 
approximations as well as other approximate models has 
not been rigorously tested for wide range of parameters and 
complex configurations.  

Another common problem in the application of antenna 
theory based methods for analysis of buried conductors is 
that they may not provide exact solutions for low 
frequencies approaching 0 Hz. This is either due to 
improper treatment of the images of currents in conductors 
[9], or due to numerical instabilities often referred to as “low 
frequency breakdown”.  

This paper presents efficient approach for full-wave 
modelling of grounding systems with arbitrary shape. First 
the electric field integral equations are cast in form that is 
more suitable for grounding analysis, since it provides exact 
solutions from 0 Hz to frequencies in the MHz range and 
improved convergence and behaviour of the Sommerfeld 
integrals. Then numerical evaluation of the new form of 
Sommerfeld integrals is substituted by bivariate cubic 

interpolation procedure of the solutions from the pre-
computed interpolation grid. This procedure provides 
substantial improvement of efficiency of the full-wave 
electromagnetic analysis of grounding systems, while 
introducing a negligible error in the results that may also 
serve as reference for extensive comparison of approximate 
models. Accuracy and efficiency of the presented approach 
are validated by results comparison with full-wave model 
that utilizes direct numerical integration.  
 
General description of the mathematical model  

Grounding system is considered as network of 
connected straight wires with arbitrary orientation, below the 
earth surface. Each wire is divided in N short cylindrical 
segments, for which the so called thin-wire approximation is 
applied. By this approximation, conductor volumes are 
reduced to short and thin filaments. This allows both 
longitudinal currents and charges to be represented by line 
distributions along the cylinder axis. Solution of the problem 
is based on MoM, using pulse basis functions for the 
current and point matching for testing boundary conditions 
regarding the tangential component of the electric field at 
the wire surface [7]. Current distribution on the structure, for 
any type of excitation [12] is found by solving the matrix 
equation: 

 

(1)      Z I V  
 

where [Z] is generalized impedance matrix, [I] is vector of 
unknown currents and [V] is vector of excitations. Elements 
zmn of the generalized impedance matrix represent the self 
or mutual impedances between pairs of test and source 
segments. They can be expressed in terms of the tangential 

component of the electric field vector nE


 at the surface of 

the test segment m, due to longitudinal current In in the 
source segment n [7]. 

Integral equations of the electric field can be formulated 
in various ways. Amongst, the mixed-potentials integral 
equation (MPIE) [13] formulation is preferable for grounding 
analysis since it provides some advantages over other 
possible variants [14]: Sommerfeld integrals converge faster 
and spatial Green functions are less singular than their 
derivatives in other variants e.g. [15]; provides separate 
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treatment of the contributions from longitudinal and leakage 
currents; with proper adjustment MPIE enables exact 
application of image theory at 0 Hz.  

In MPIE formulation, the scattered electric field vector   

( )sE r
   is expressed in terms of magnetic vector potential 

( )A r
 

 and electric scalar potential ( )r


, due to longitudinal 

current ( )I r


along the axis of the source segment  . 

 (2)  ( ) ( ) ( )sE r j A r r  


 

(3)     , ( )A nA r G r r I r d


   
       

(4)     , ( )r G r r I r d
     

      

Here, AG   is a dyadic Green’s function of the magnetic 

vector potential and G  is a Green’s function of the electric 

scalar potential. Green’s functions are actually potentials at 
point ( , , )r x y z


 produced by unit-strength arbitrarily 

oriented current dipole at point ( , , )r x y z   
. 

 
Spatial domain Green's functions in formulation B 

Different formulations of Green's functions for magnetic 
vector potentials are available [16]. Here we adopt 
formulation B for source and evaluation points in semi-
infinite conducting medium characterized by conductivity 1, 
permeability 0  and permittivity ε1, as illustrated on Fig. 1. 

 

 
 

Fig.1. Magnetic vector potential components for HED and VED 
 
The dyadic Green's function for magnetic vector 

potential due to electric dipole with arbitrary orientation can 
be expressed by the contributions of electric dipoles with 
two typical positions, x-oriented horizontal electric dipole 
(HED) and z-oriented vertical electric dipole (VED): 

 

(5)  ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆˆ( )xx yy xy zz
A A A A AG xx G yy G xy yx G zz G          

 
 

where x̂ , ŷ  and ẑ  are direction cosines of source 

dipole, and x̂ , ŷ  and ẑ  are direction cosines of calculated 

magnetic vector potential in local coordinate system shown 
in Fig. 1.  

The Green's function for the scalar potential follows from 
the application of the Lorentz gauge, for example: 

 

(6)  
0 1

zz
A

j
G G

z


 


 


 

Spatial domain Green's functions, for horizontal and 
vertical electrical dipole in semi-infinite conducting media, 
can be presented in various forms. The most general is 
written as a sum of the contribution from direct term and the 
influence of the air-earth interface in integral form: 

 (7)  
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(11) 
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(12)  
1 '
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1

( )
zjk z z

TE TM
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e
I R R J k k dk
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(13)  
1 '

2 10 10 20
1

( )
zjk z z

TE TM

z

e
I R R J k k dk
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 


    

(14) 
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To avoid numerical instability at low frequencies 
approaching to 0 Hz, all frequency dependent parameters in 
(7)-(14) are expressed in terms of the complex conductivity 
n of n-th region (n=0 for the air, and n=1 for the earth): 

 

n n nj    , n n nk j   , 2 2
z n nk k k   

1 0
10

1 0

R
 
 
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, 1 0

10
1 0

TE z z

z z

jk jk
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jk jk


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
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k k

 
 





 

 

Here, 10
TER , 10

TMR and 10R  are Fresnel TE, TM and quasi-

static reflection coefficients, kzn and kn are vertical wave 
number and propagation constant for the corresponding 
n-th region, and kρ is radial wave number. The geometric 
quantities ρ=[(x-x’)2+(y-y’)2]-2 and Δzp=|z+z’| are the radial 
and vertical distance between the source image and 
evaluation point, respectively. 
 
Analysis of characteristics of the Sommerfeld integrals 

For a fixed set of frequency and earth characteristics, 
when source and observation points are located in same 
semi-infinite region, the integral equations in the Green’s 
functions depend on the two geometric quantities ρ and Δzp. 
This allows for named integral equations to be pre-
computed for a discrete set of values for ρ and Δzp  in a two-
dimensional interpolation grid, and then, the required 
solutions of integral parts in Green’s functions can be 
readily obtained by suitable interpolation method. 
Interpolation of the Sommerfeld integrals is commonly used 
method for improving the efficiency in antenna analysis [17, 
18].  This approach is already implemented for improving 
the efficiency of the well known antenna code NEC [19] and 
electromagnetic simulation software FEKO, but for a 
different set of integral equations optimized for antenna 
analysis. Here, similar procedure in improving the efficiency 
is applied, for evaluation of the set of integral equations 
(12)-(14). In the following analysis the interpolation grid will 
be generated for another two geometric parameters, related 
to ρ and Δzp: the distance between the source image 
location and evaluation point, ri=(ρ2+Δzp

2)-2, and the angle 
between vectors, θ=tan-1(ρ/ Δzp), illustrated on Fig. 1. For a 
fixed set of parameters f = 10 MHz, 1 = 0.01 S/m, ε1 = 10ε0  
and  1 = 0, using the numerical integration procedure 
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provided in [20], the following interpolation surfaces and 
convergence characteristics are obtained, as illustrated in 
Fig. 2.  

The solutions of Sommerfeld integrals (12)-(14), 
illustrated on Fig. 2, show singular behaviour and numerical 
instability for ri/λ1→0, and slow convergence (up to 2.106 

calls of integrand) for θ→0. These conditions are met for 
source and evaluation points at great distance near the 
earth surface, which is especially unfortunate for analysis of 
large grounding systems. Due to the steep variations of 
solutions, obtained surfaces are not suitable for 
interpolation. 

 
Fig.2. Solutions (upper) and number of iterations to convergence (lower figures) for integrals 

1
I  , 

2
I  and 

3
I   before singularities extraction  

 
 

Development of new form of Green's functions 
 To increase convergence of the Sommerfeld integrals 
and obtain smooth variations in the spatial domain, 
singularities from integrals (12)-(14) will be extracted in form 
of their low frequency approximations [21]. For low 
frequencies approaching to 0 Hz, the approximation 
kz0≈kz1≈kρ is valid, so the following approximation for the 
reflection coefficients is obtained: 
 

(15) 10 10 100,TE TMR R R    
 

By substitution of reflection coefficients (15) in (12)-(14), 
extraction of the derived low frequency approximations of 
integrals (12)-(14) and considering the following identities: 
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new form of Green functions (7)-(11) is derived: 
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It is important to note that terms related to I1, I2 and I3 in 
equations (18)-(22) are the difference between the 
application of the low frequency approximation of Green's 
functions for formulation B and the full-wave 
electromagnetic theory formulated by MPIE. For 
frequencies approaching 0 Hz the solution of these integrals 
approaches to 0, and therefore, (18)-(22) provides exact 
solution for all frequencies of interest, starting from 0 Hz. 

In Fig. 3, surfaces for integrals (23)-(25) are illustrated 
for the same set of parameters as used in the previous 
analysis. Results show that extraction of the singularities 
significantly increases the efficiency of numerical evaluation 
of Green's functions. Integrals do not show singular 
behaviour and instability, while the convergence is 
substantially improved. More important, the interpolation 
surfaces are significantly smoothed, which permits use of 
sparse interpolation grids.  
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Fig.3. Solutions (upper) and number of iterations to convergence (lower figures) for integrals I1, I2 and I3 before singularities extraction  
 
 Reduced number of points in the interpolation grids, 
together with the improved convergence, provides 
substantial reduction of computation times in generating 
interpolation grids, which is especially important for time-
domain analysis in transient and lightning related studies 
where high number of frequencies are involved. 

 
Validation of efficiency and accuracy of the presented 
approach 

The presented approach is validated by two examples, 
illustrated on Fig. 4: 

1) horizontal grounding grid with 50 x 100 m side 
lengths, composed of square meshes with conductor 
spacing equal to 5 m, buried at depth of 0.5 m. Such 
grounding grid is typically subject of electric power safety 
analysis. Due to the large system dimensions, interpolation 
grid for distances up to ri max=10λ1 will be required for soil 
with good conductivity, and frequencies up to 10 MHz.  

2) grounding system with arbitrarily oriented electrodes, 
that occupies a volume of 15 x 15 x 3 m. Such grounding 
system is typical for wind turbines. 

 

. 
Fig.4. Analyzed geometries: a) horizontal grounding grid, b) wind 
turbine grounding system. 
 

 

. 
Fig.5. Positions of required (blue) and pre-computed (black) 
elements in interpolation grids for: a) horizontal grounding grid, 
b) wind turbine grounding system. 
 

In both cases, perfect electric conductors with 7-mm 
radius are considered, buried in uniform soil with resistivity 
ρ1 equal to 30, 300 and 3000 Ωm, with permeability 1 = 0   
and permittivity ε1 = 10ε0 . Currents with frequencies from 
10 Hz to 10 MHz, are injected in the centre of the grounding 
systems.  

 

. 
Fig.5. Validation of efficiency (upper) and accuracy of analysis 
(lower figure) for horizontal grounding grid 

. 
Fig.6. Validation of efficiency (upper) and accuracy of analysis 
(lower figure) for wind turbine grounding system 

 
a) b)

     
a)                                     b)    
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The structures in both cases are divided to around   
N ≈ 1200 segments. Variable size interpolation grid is 
generated, relative to the analyzed frequency and soil 
characteristics. The elements of the interpolation grid are 
not pre-computed, but they are computed and stored as 
required. Solutions for integrals (23)-(25) in Green’s 
functions (18)–(22) are then obtained by bivariate 
interpolation. The positions of required and pre-computed 
elements in interpolation grid, for the analyzed cases, for a 
frequency of 1 MHz and earth resistivity ρ1=300 Ωm are 
illustrated on Fig. 5. 

For a given set of parameters for both cases, efficiency 
and accuracy of the proposed method are validated by 
comparison of: 
- ratio of evaluation times for currents distribution on 
structures in both cases, obtained by numerical integration 
(tN) and with interpolation of the Sommerfeld integrals (tI) in 
equations (23)-(25); 
- the RMS error for longitudinal currents in electrodes of 
grounding systems, evaluated as [22]: 
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where In
INT and In

NUM  are computed complex coefficients of 
current at N segments, obtained by interpolation and 
numerical evaluation of Sommerfeld integrals. 
 
Conclusions 

With the presented adjustments of the MPIE formulated 
integral equations and the implemented interpolation 
method, following benefits are achieved: 
- electric field integral equations are cast in form that 
provides exact solution for all frequencies of interest, 
starting from 0 Hz to frequencies in the MHz range; 
- substantial improvement of convergence is obtained by 
extraction of singularities from the integral equations; 
- interpolation surfaces are smoother, and therefore, sparse 
interpolation grids with less elements are required; 
- the presented procedure provides substantial reduction of 
computation times, from 30 to 200 times depending on the 
analyzed case, as illustrated on Fig. 6 and Fig. 7; 
- the interpolation procedure provides nearly exact results, 
introducing errors smaller that 0.1% for longitudinal currents 
distribution in electrodes, as illustrated on Fig. 6 and Fig. 7; 

- considering minor introduced errors, this procedure 
may serve as reference for scientific and practical 
applications. 
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