Warsaw University of Technology (1), Bialystok University of Technology (2)

doi:10.15199/48.2019.07.20

## Colour rendition quality of typical fluorescent lamps determined by CIE Colour Fidelity Index and Colour Rendering Index

**Abstract**. This paper describes how CIE colour fidelity index  $R_f$  values are correlated with CIE  $R_a$  colour rendering index values for typical FL fluorescent lamps. The results shows that for broad band FL lamps  $R_f$  doesn't introduce drastically changes in relation to  $R_a$  values. The other situation is with narrow band FL lamps whose spectral power distribution was designed for achieving of high  $R_a$  value. At that case there is no correlation between  $R_a$  and  $R_f$ .

**Streszczenie.** W artykule przedstawiono badania nad zależnością wskaźnika wierności barwy CIE R<sub>f</sub> od wskaźnika oddawania barw CIE R<sub>a</sub> dla standardowych lamp fluorescencyjnych (świetlówek) FL. Wyniki pokazują, że dla szerokopasmowych świetlówek, wskaźnik R<sub>f</sub> nie wprowadza drastycznych zmian w stosunku do wartości R<sub>a</sub>. W przypadku wąskopasmowych lamp FL, tj. takich których rozkład widmowy został zaprojektowany w celu osiągnięcia wysokiej wartości R<sub>a</sub> pomimo faktu iż wizualnie ich światło nie oddaje perfekcyjnie barw, wartość wskaźnika Rf nie koreluje z Ra. (Jakość oddawania barw współczesnych lamp fluorescencyjnych określona zdefiniowanym przez CIE wskaźnikiem wierności barwy oraz wskaźnikiem oddawania barw).

Keywords: colorimetry, colour rendering index, colour fidelity index, CIE illuminants. Słowa kluczowe: kolorymetria, wskaźnik oddawania barw, wskaźnik wierności barwy, iluminanty CIE.

### Introduction

The assessment of artificial lamp colour rendition quality is one of the key technical and scientific issue which appeared with beginning of designing and manufacturing of electrical lamps. The mathematical parameters whose can be used as colour quality metrics are under continuously development up to these days. The most recent internationally recognized document about this subject was published in April 2017 by International Commission on Illumination CIE as Technical Report 224:2017 entitled "Colour Fidelity Index for accurate scientific use" [1]. In this document is defined general colour fidelity index Rf of light sources and descried how to calculated it. Before that CIE recommendation, there had been a lot of proposals of lighting metrics for describing colour rendering of light sources (Fig.1). The broader interpretation of colour quality index calculations were made in several publications [2,3,4,5,6,7]. However only one from all of proposals got international approval by CIE. This new Rf measure is an additional to described in the 60's, also by CIE, Colour Rendering Index R<sub>a</sub>. The CIE said that introduction of the new CIE R<sub>f</sub> index does not either replace the CIE R<sub>a</sub> index for the purpose of product evaluation and specifications or meet regulatory requirements but aims at introducing an additional measure in light sources specifications that may has possibility to become the main parameter which describes the light's colour quality in the future [1]. CIE colour fidelity index R<sub>f</sub> eliminates many of the errors highlighted in the CIE CRI system because is based on higher number of colour test samples and more homogeneous colour space (CAM02-UCS) than CRI method.

Furthermore, the CIE defined the terms, "colour rendering" and "colour fidelity", as a similar meaning to be distinguished it from the other aspects of colour quality [1]. Despite that, CIE document 13.3-1995 said that colour quality assessment for whole range available lamps can be done by CRI R<sub>a</sub> method, however, the research carried out indicates that this method should not be used for white LED light sources [3,4,7,8]. In 2015 the North American Illuminating Engineering Society (IES) introduced and recommended for use in the United States new measures for lamps colour quality assessment known as TM 30-15 method. This new IES method introduced two colour rendering indicators – the colour fidelity index  $R_f$  as

equivalent to the CIE 13.3-1995 CRI R<sub>a</sub> and the colour gamut index, i.e. the index referred to the Gamut Area Index [2]. In June 2018 IES [9] in IES TM-30-18 document presented a revision of TM-30-15 method. The TM-30-18 method contains three modifications in relation to TM-30-15 method. Those modifications were made to achieve consistency with publication CIE 224:2017. Both indices (CIE 224:2017 R<sub>f</sub> and IES-TM-30-18 R<sub>f</sub>) have been harmonized. There is no difference between CIE R<sub>f</sub> and IES TM R<sub>f</sub> in value. In spite of that, currently only CIE R<sub>a</sub> and CIE R<sub>f</sub> indicators are internationally recognized for describing colour quality of light sources. Therefore, it is interesting to examine whether there is any dependency between the values of these indicators and whether or not it can be described numerically.

In this paper authors are focused to compare the CIE  $R_a$  and CIE  $R_f$  indices in assessing light colour quality of the group of well known typical fluorescent lamps.

# Differences in the assessment of the colour quality of individual indicators

Most metric which were proposed for assessing the colour quality of the light source are based on the evaluation of the differences occurring in the appearance of colour test samples illuminated by reference source and lamp under evaluation [7].

In comparison with the CIE  $R_a$  method (described at CIE 13.3-1995 document) in CIE  $R_f$  calculations the number of colour samples is changed from 8 to 99. Those set of the colour samples were designed to reliably uniform the colour distribution in the colour space. This enlarged set of test samples compare to 8 CIE CRI method test colour samples has some advantages. Those samples uniformly distributed both in terms of saturation and brightness. Their spectral coefficients uniformly fill the spectral space.

To eliminating the discontinuity of scale occurring for CIE  $R_a$  calculations [3,4,5,6,7] in CIE  $R_f$  method the reference light source is changed. As the reference source for the lamps under assessment whose correlated colour temperature (CCT) is less than 4500K, in CIE  $R_f$  calculations the spectral power distribution (SPDs) of Planck's radiator (Fig. 2) is taken under consideration. For tested lamps with CCT above 5000K the SPDs of illuminant D50 is chosen as reference light source (Fig. 3).



Fig. 1 The timeline of proposed metrics for light color quality assessment

In the range from 4500K to 5000K, the SPDs of light source which is a linear combination of the spectral distribution of the Planck radiator and of a daylight (Fig.2, Fig.3) has been introduced. A change in those ranges causes small differences in the R<sub>f</sub> value – usually less than 1 for the general index and from 2.5 to 6.5 for the special indices determined for each R<sub>f</sub> method colour sample. Despite the small differences, this is a significant change that eliminates the imperfections in the CIE R<sub>a</sub> calculation method and allows for a reliable assessment of light sources in the full range of colour temperatures.







Fig. 3 The SPDs of D50, D55, D65, D75 illuminants

The calculation of the colour fidelity index  $R_f$  is made with the scaling factor (eq. 1).

(1) 
$$R_f' = 100 - 6,37(\frac{1}{99}\sum_{i=1}^{99} \Delta E_{Jab,i})$$

where:  $\Delta E_{Jab,i}$  – difference between the correlate of the

perceived colour of a test sample illuminated by test and reference light source (CAM02UCS colour space).

In the CIE 224  $R_f$  method the scaling factor is selected so that the values of  $R_f$  and  $R_a$  were similar for 187 SPDs of lamps (i.e 36 fluorescent lamps, 14 discharge lamps, 129 LED sources with phosphor and 9 hybrid LED sources) [2].

#### Comparison of the colour rendering indicates

Twelve CIE FL illuminants (fluorescent lamps) and fifteen additional illuminants shown in the CIE 2004 Colorimetry technical report, were used to calculate the CIE R<sub>a</sub> and CIE R<sub>f</sub> colour rendering indices [9,10,11]. This group of light sources was selected to represent the range of spectral power distributions (SPD) which are possible to be achieved in this construction. The same representation is a good choice to check what influence of changes that were introduced in the colour fidelity calculation is in comparison to the colour rendering index according to CIE 13.3-1995 [11]. The standard SPDs measurement interval was defined by the CIE and it is 5 nm, the same interval is used in the calculation of the colour quality indicates. The differences in the SPD measurements between different certificated laboratories were checked and do not showed significant influence on the value of the colour guality indicates [12].

For the first group are selected classic fluorescent light sources (fluorescent lamps) which in their power spectral distribution (SPD) have two broad bands of continuous spectrum and are characterized by a lack of radiation in the range corresponding to the red colour (Fig.4).



CIE as standard illuminant F1, F2, F3, F4, F5, F6

The second group consists of FL lamps that have been designed to obtain the highest values of  $R_a$  colour rendering index (Fig.5).

The third group includes three-band fluorescent lamps which in their spectral power distribution have three characteristic narrow bands (Fig.6). These light sources are characterized by very high efficiency and good colour rendering index  $R_a$ .

Another group (Fig. 7) are halophosphate phosphor based fluorescent lamps (second generation of fluorescent lamps). Among the sources investigated there were also Deluxe fluorescent light sources, i.e. those that offer the same colour temperature as previous designs but have better colour rendering (Fig.8).

The next group of lamps shown in Fig.9 includes the representation of three-band fluorescent lamps (FL 3.7 - FL 3.11) and fluorescent lamps with a multi-band phosphor (FL 3.12 - FL 3.14). The last source is a fluorescent light source that simulates the D65 (FL 3.15).



Fig. 5 The SPDs of broadband fluorescent light sources with high Ra, defined by CIE as standard illuminant F7, F8, F9



Fig. 6 The SPDs of three-band fluorescent light sources



Fig. 7 The SPDs of second generation fluorescent standard illuminants FL3.1, FL3.2, FL3.3



Fig. 8 The SPDs of deluxe fluorescent standard illuminants



Fig. 9 The SPDs of multi-band phosphor fluorescent standard illuminants FL3.7 to FL3.15

The values of FL lamp colour quality indices CIE  $R_a$  and  $R_f$  are shown in the tables (Table 1, Table 2). The comparison of  $R_a$  and  $R_f$  values is shown on the Fig. 10.

Table 1. The CIE colour quality indices of fluorescent lamps recommended by CIE as standard illuminants F1-F12

|               | Parameters  |           |                |  |  |
|---------------|-------------|-----------|----------------|--|--|
| Iluminant CIE | Colour      | Index CIE |                |  |  |
|               | Temperature | Ra        | R <sub>f</sub> |  |  |
| F1            | 6428        | 76        | 81             |  |  |
| F2            | 4224        | 64        | 71             |  |  |
| F3            | 3446        | 57        | 63             |  |  |
| F4            | 2938        | 51        | 57             |  |  |
| F5            | 6345        | 72        | 78             |  |  |
| F6            | 4148        | 59        | 67             |  |  |
| F7            | 6495        | 90        | 92             |  |  |
| F8            | 4997        | 96        | 96             |  |  |
| F9            | 4149        | 90        | 91             |  |  |
| F10           | 4998        | 81        | 80             |  |  |
| F11           | 3999        | 83        | 80             |  |  |
| F12           | 3000        | 83        | 78             |  |  |

Table 2. The CIE colour quality indices of fluorescent lamps recommended by CIE as standard illuminants FL 3.1-FL 3.15

|               | Parameters  |           |                |  |
|---------------|-------------|-----------|----------------|--|
| Iluminant CIE | Colour      | Index CIE |                |  |
|               | Temperature | Ra        | R <sub>f</sub> |  |
| FL 3.1        | 2932        | 51        | 55             |  |
| FL 3.2        | 3965        | 70        | 74             |  |
| FL 3.3        | 6280        | 72        | 77             |  |
| FL 3.4        | 2904        | 86        | 80             |  |
| FL 3.5        | 4086        | 96        | 96             |  |
| FL 3.6        | 4894        | 96        | 97             |  |
| FL 3.7        | 2979        | 81        | 76             |  |
| FL 3.8        | 4006        | 80        | 79             |  |
| FL 3.9        | 4852        | 80        | 78             |  |
| FL 3.10       | 5000        | 88        | 86             |  |
| FL 3.11       | 5853        | 78        | 78             |  |
| FL 3.12       | 2984        | 93        | 91             |  |
| FL 3.13       | 3896        | 96        | 96             |  |
| FL 3.14       | 5044        | 95        | 94             |  |
| FL 3.15       | 6508        | 98        | 99             |  |



Fig. 10 The relationship between CIE  $R_{\rm f}$  and CIE  $R_{\rm a}$  for CIE defined standard illuminants F1 to F12 and FL3.1 to FL3.15

The results presented on Fig. 10 showed that there is strong correlation between  $R_a$  and  $R_f$  colour quality metrics (coefficient of determination  $R^2$ =0.9805) for classical fluorescent lamps (F1÷F6) and (FL3.1÷FL3.3). Those FL lamps having rich light spectrum in yellow and orange-yellow regions but poor representation of red and greens lights.

For lamps with broadband spectrum (F7÷F9), deluxe type lamps (FL3.5÷FL3.6) and multi-band fluorescent lamps (FL3.12÷FL3.15) and one three-band FL there is still some correlation between old and new lamp colour quality metrics ( $R^2$ =0.8821).

The most interesting result is for (F10÷F12), (FL3.7÷FL3.9 and FL3.11) lamps which contain the narrow spectral lines (strong orange-red lines at around 611 nm and green band around 542 nm and weaker band in bluegreen region). The FL3.4 deluxe lamp also belongs to this group. For this group of lamps there is no correlation between R<sub>a</sub> and R<sub>f</sub> (the coefficient of determination is  $R^2$ =0.1892). Furthermore the  $R_f$  index is lower in value than R<sub>a</sub>. This fact can be interpreted as proof of the fact that the new measure identifies the problem of high CRI and poor colour perception. For the other hand it can be interpreted as sign that there are some number of ambiguities connected with new Rf measure. Firstly the same value of the R<sub>f</sub> index (different R<sub>a</sub>) is assign to more than one light source. We can notice that fact on two groups of lamps -(F10, F11, FL3.4) and (FL3.11, FL3.9, F12). Similar situation occurred when we analyse the same R<sub>a</sub> value but different R<sub>f</sub> - there are three groups of lamps - (FL 3.8, FL 3.9), (FL3.7, F10) and (F11, F12). Based on this observation is possible to say that interpretation which index (Ra or Rf) works better can't be assess on such a small group of light sources and in the future this kind of research have to be done for large number of lamps having different SPDs . The other issue is that the difference which is possible to be perceived by the human eye in CIE R<sub>a</sub> is 5 in value [3]. This number should not be broadened to the CIE R<sub>f</sub> because the research about that issue hasn't been done yet.

The research presented in this paper is supported by the statutory funds of the Faculty of Electrical Engineering, Warsaw University of Technology within the framework of Dean's Grant 2018, Poland.

Authors: mgr inż. Justyna Kowalska, Politechnika Warszawska, Wydział Elektryczny, Instytut Elektroenergetyki, Zakład Techniki Świetlnej, 00-662 Warszawa, ul. Koszykowa 75, E-mail: justyna.kowalska@ien.pw.edu.pl; dr hab. inż. Irena Fryc, Wydział Katedra Białostocka, Elektryczny, Politechnika Elektroenergetyki, Fotoniki i Techniki Świetlnej, 15-951 Białystok, ul. Wiejska 45d, E-mail: i.fryc@pb.edu.pl

#### REFERENCES

- [1] Technical Report CIE 224:2017 Colour Fidelity Index for accurate scientific use
- [2] David A., Fini P.T., Houser K.W., Ohno Y., Royer M.P., Smet K.A.G., Whitehead L., Development of the IES method for evaluating the color rendition of light sources, *Optics Express*, 23 (2015), nr 12, 15888-15906
- [3] Houser K., Mossman M., Smet K., Whitehead L., Tutorial:Color Rendering and Its Applications in Lighting, *Leukos*, 12 (2016), 7-26
- [4] Davis W., Ohno Y., Approaches to color rendering measurment, *Journal of Modern Optics*, 56 (2009), nr 13, 1412-1419
- [5] Kowalska J., Ambiguity and limitations in determining the quality of the color rendering of light sources by index Ra (CIE CRI)

#### Conclusions

The research presented in the article was aimed at presenting the possibilities of interpreting the lamp's colour quality index R<sub>f</sub>. The data provided in this paper were used for assessing the differences which occurring when comparison of CIE R<sub>f</sub> to CIE CRI R<sub>a</sub> index were done. The data presented has confirmed that the CIE Colour Fidelity Index R<sub>f</sub> compared to the CIE CRI (R<sub>a</sub>) doesn't introduce drastic changes in index interpretation for some of the commonly used fluorescent lamps. Nevertheless for the narrow-band FL light sources, which spectral power distribution was designed only to achieve high values of the colour rendering index Ra, scored drastically different values of the colour fidelity index Rf. According to this fact is possible to say that the R<sub>f</sub> method is smarter than R<sub>a</sub>. This situation is good from the point of view of the average user of those indicators. It means that the new R<sub>f</sub> index did not destroy any requirements at lighting standards which are describing lighting quality parameter when traditional light sources are applied. The other good thing is that R<sub>f</sub> method is able to detect the creativity which was done for narrowband lamp's SPDs made to achieve only high value of R<sub>a</sub> however in user opinion their colour quality was not high - but up to now there was lack of index which was able to describe this fact. The value of R<sub>f</sub> index is lower than R<sub>a</sub> for this kind of light sources. Base on this fact the user of those lamps may pay attention that this type of light source could render colours much more different than in reality. The investigation which was made in this article pointed the research area which should be taken into consideration for the broader studies of CIE 224:2017.

(original title: Niejednoznaczności o ograniczenia w określaniu jakości oddawania barw źródeł światła wskaźnikiem Ra (CIE CRI)), *Przeglad Elektrotechniczny*, 5 (2017), 74-78

- [6] Kowalska J., Fryc I., Comparative analysis of light sources color rendition describe by CIE Ra, NIST CQS and IES TM-30-15 Rf and Rg (original title: Analiza porównawcza metod oceny jakości oddawania barw źródeł światła przy użyciu wskaźników CIE Ra, NIST CQS oraz IES TM-30-15 Rf I Rg), Zeszyty Naukowe Politechniki Gdańskiej, 55 (2017), 139-143
- [7] Zukauskas A., Shur M.S., Color Rendering Metrics: Status, Methods and Future Development, Handbook of Advanced Lighting Technology, Switzerland, 2017, 799-827
- [8] Kowalska J., Fryc I., Wskaźnik oddawania barw Ra(CRI) czy umożliwia on jednoznaczną ocenę jakości barwnej oświetlenia uzyskiwanego przy użyciu dowolnego rodzaju źródła światła?, elektro.info, 9 (2017),92-100.
- [9] ANSI/IES TM-30-18, IES Method for Evaluating Light Source Color Rendition, 2018
- [10] Technical Report CIE 15:2004 Colorimetry
- [11] Technical Report CIE 13.3-1995 Method of Measuring and Specifying Colour Rendering Properties of Light Sources
- [12] Jakubowski P., Kowalska J., Supronowicz R., Fryc I., The Influence of Spectral Measurements Uncertainty of Fluorescent Lamps on Calculated Value of their Relative Melanopic Weighted Irradiance and Colour Quality Parameters, 7th Lighting Conference of the Visegrad Countries : LUMEN V4, Třebíč, September 18-20, 2018