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Abstract. The research considers the optimization of the taps position of voltage transformers to minimize power loss. The Particle Swarm 
Optimization algorithm is implemented to this optimization problem. The advantage of this algorithm is the ability to adapt to an optimization problem. 
It was found out that the Particle Swarm Optimization algorithm is more productive than the greedy heuristic algorithm based on the division of this 
optimization problem into subtasks. Also, the paper studied the influence of particle velocity restriction on the efficiency of the algorithm. 
 
Streszczenie. W pracy analizowano metode optymalizacji strat transformatora przez dobór stosunku uzwojeń. Do tego celu wykorzystano algorytm 
genetyczny PSO. Porównano prace układu z innymi algorytmami adaptacyjnymi.  Minimalizacja strat mocy w transformatorze przez dobór 
stosunku zwojów z wykorzystaniem algorytmu PSO 
 
Keywords: voltage transformer, active power loss, greedy heuristic, swarm intelligence, particle swarm optimization. 
Słowa kluczowe: transformator, straty mocy, algorytm genetyczny PSO 
 
 

Introduction 
Power losses in electrical grids represent one of the 

essential indicators of effectiveness. The power losses in 
electrical grids are the difference between power generated 
by power plants and power consumed by customers. The 
losses occur in power transformer and power lines, 
especially when transmission energy over long distances. 

Voltage control noted of power system it allows to solve 
the following main tasks [1, 2]: 

• balancing between generation and consumption; 
• providing the required voltage level at the terminals 

(outputs) of consumers of electric energy. 
There is voltage regulation on the longitudinal and 

transverse directions. Providing the required level of voltage 
at the terminals of consumers of electric energy is solved 
mainly by longitudinal regulation [2, 3, 4]. 

The existing centralized management system prevents 
many active objects from appearing in the network. The 
basis in the centralized system is the control center, where 
the modes of operation of all control objects are determined 
[3, 5]. When a new object or a change in the desire of the 
subjects, it is necessary to reconfigure the system, which is 
a very time-consuming process. 

The emergence of distributed means of voltage 
regulation in the network, belonging to different subjects, 
having their own goals of regulation, determines the need 
for a qualitatively new solution to the problem of voltage 
regulation in electric networks. It is necessary to develop 
new methods to control the modes of operation of power 
supply systems, including distributed generation. Currently, 
worldwide attention is paid to the creation of intelligent 
power supply networks (Smart Grid). 

In high and medium voltage networks, there are large 
power flows, accompanied by significant losses. The 
problem of reducing power losses during transmission can 
be solved through transverse voltage regulation. 

The problem of voltage regulation can be solved by 
adjusting the power factor of transformers in the network. 
Changing the position of the transformer taps does not 
require the installation of additional equipment, in contrast 
to using shunt capacitors for reactive power compensation. 

Currently, the task of selecting the tap positions of 
transformers, as a rule, is solved by breaking the problem 
down into separate parts with the optimization of each of 
them [3, 4, 6], or using heuristics, often based on fuzzy logic 
[7, 8]. At the same time, for power systems, it is advisable 
to use optimization stochastic population-based algorithms, 
which can find quasi-optimal solutions in a reasonable time 

and, most importantly, to adapt to the conditions of the 
problems and the topology of the optimized systems [9-12]. 
In this paper, we compare deterministic methods such as 
greedy heuristics with a stochastic Particle Swarm 
Optimization (PSO) algorithm.  

A fragment of Tajikistan's electric power system was 
chosen as a model for experiments. We consider the 17 
most crucial transformers of the power system. All of these 
transformers have the ability to regulate the voltage by 
switching with 15 steps and a step between the coefficients 
1.78. Information on network nodes is given in Table 1, 
information on transformers is given in Table 2.  

 
The Optimization problem 

(1)  
1 , 1,...,

arg min( ( ) ( ))
i

opt

Tr m i n
Tr P Tr Stab Tr

  
    

 

where: Tr – vector of the transformer tap positions, ΔP(Tr) – 
active power loss in the power system, Stab(Tr) is a penalty 
function to check the stability of the power system, m – 
count of possible transformer tap positions, n – is count of 
transformers. It the power in question, n = 17, m = 15. 
 
The Greedy Heuristics algorithm 

The problem under consideration is a combinatorial 
optimization problem. The total number of possible 
solutions-combinations of the problem can be determined 
based on the number of adjustable transformers (17) and 
the number of possible positions of the transformer taps 
(15). The total number of combinations is 1517, which is 
about 1020. Obviously, it is impossible to apply a brute force 
as a full search of all possible combinations in practice. It is 
using of Branch and Bounds method or Simplex method 
also not suitable for this problem, because for the network 
in question requires a cumbersome system of differential 
equations, which is solved approximately. Also, this 
combinatorial problem belongs to the class of NP-complete, 
since it can be reduced to the SAT problem asks whether a 
given boolean formula is satisfiable. Therefore, the time 
required for its exact solution increases exponentially with 
the number of transformers. 

It is necessary to apply a method that, firstly, would find 
a solution in an acceptable time, and secondly, would allow 
looking for solutions to the optimization problem, as a black 
box. The second requirement is due to the high complexity 
of the integration of optimization methods in mathematical 
models used for the calculation of power grid modes. 
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Table 1. Voltage, active and reactive power in the steady state 
Id Voltage nominal, 

kV 
Active power, 

MW 
Reactive power, 

MVAR 
1 230 179.5 134.6 
2 11 28 19.6 
3 115 163 117.4 
4 115 0 0 
5 11 0 0 
6 38 18.5 12.9 
7 230 109 76.3 
8 11 0 0 
9 115 0 0 

10 230 -459 -302.7 
11 230 0 0 
12 7 4 2.4 
13 38 12 8.4 
14 230 0 0 
15 230 0 0 
16 11 14 9.8 
17 230 0 0 
18 38 45 30.1 
19 11 15 9.3 
20 115 124 86.8 
21 115 0 0 
22 11 8.4 6.3 
23 38 20 13.6 
24 230 0 0 
25 115 0 0 
30 11 -70 -46.1 
31 11 -60 -39.5 
32 230 0 0 
33 230 0 0 
34 230 0 0 
35 230 0 0 
36 230 0 0 
37 230 0 0 
38 230 0 0 
39 230 0 0 
40 230 0 0 
41 11 -70 -24.5 
42 11 -70 -46.1 
43 230 0 0 
45 11 -60 -29.9 
44 230 0 0 
46 230 0 0 
47 230 0 0 
48 115 0 0 
49 115 0 0 
50 115 0 0 
51 115 0 0 

 
Table 2. Considered transformers 

Id Transformer High-voltage side 
node 

Low-voltage side 
node 

1 7 8 
2 7 8 
3 15 16 
4 15 16 
5 15 16 
6 1 2 
7 1 2 
8 24 41 
9 24 42 

10 4 5 
11 4 5 
12 21 22 
13 21 22 
14 11 45 
15 17 19 
16 17 19 
17 14 12 

 
Simple in implementation, fast in calculations and at the 

same time providing some level of increase of energy 

efficiency of the system is the greedy heuristic (GH) [6]. It 
works as follows. 

1. The current position of all adjustable transformers 
is set. 

2.  Let k – be the number of the considered 
transformer, start with k = 1.  

3. If k does not exceed the number of transformers, 
go to step 4. Otherwise to step 6. 

4. Calculate the steady state for all 15 possible positions 
of transformer tap k. The position at which the loss of active 
power in the network lines is the smallest is stored as the 
current position. 

5. k = k + 1. Go to paragraph 3. 
6. If there is no improvement in the target function in the 

implementation of steps 4 and 5, complete the work. 
Otherwise, go to step 2. 

The algorithm performs a local search, going through all 
possible positions of each transformer in turn. In the case 
where the mutual influence of transformers is small, the 
algorithm can find the optimal or close to the optimal 
solution in 1-3 passes through all transformers [6]. 
However, otherwise, the efficiency of the method may be 
low due to falling into the same local extrema at each 
iteration. This drawback is inherent in other heuristic 
methods that optimize parts of the system separately [3]. 

In studies [6, 8], it is shown that this algorithm can be 
improved using Fibonacci numbers or Fuzzy logic. 
Fibonacci numbers approach reduces the time of the 
algorithm by reducing the iterated options. However, the 
quality of the resulting solutions remains the same as the 
GH algorithm. In this case, for the application of Fuzzy logic 
is associated with significant labor costs for the preparation 
of fuzzy input and output linguistic variables, and rules 
describing the choice of the positions of the tap in a given 
situation.  

Therefore, in this paper, a direct experimental 
comparison of these methods is not carried out. For the 
experiments, the implementation simpler algorithm of the 
GH algorithm described above is chosen. Alternatively, an 
approach based on a completely different mechanism, 
namely the PSO algorithm, is considered. 
 
The Particle Swarm Optimization algorithm 

Greedy heuristic methods are characterized by high 
speed of work, but strongly depend on the topology of the 
problem, the initial approximation and heuristic rules. 
Therefore, the solution obtained by the greedy heuristic 
method can be both optimal and very far from optimal 
depending on the above factors. More complex and useful 
are stochastic algorithms of global optimization, such as the 
Genetic algorithm, the Simulated Annealing algorithm, the 
Swarm Intelligence algorithms. These stochastic meta-
heuristics methods demonstrate high efficiency in terms of 
decision quality and calculation speed for various 
optimization problems in power systems (Simulated 
annealing [13], Genetic algorithm [10, 12, 14], Ant colony 
optimization [10], Bee algorithm [12], the most popular 
swarm algorithm is PSO). 

The PSO algorithm as meta-heuristic method has high 
robustness and flexibility, it is realy important for 
optimzation complex and non-linear systems. The survey of 
meta-heuristic method [10] shows that PSO is fast and 
robustness method for for under voltage load shedding in 
power systems. 

Numerous studies prove the effectiveness of the PSO 
algorithm in solving problems of reactive power 
compensation, and voltage control. The research [12] 
compares the Genetic algorithm, Bee algorithm and PSO 
algorithm in operation control of reactive power units. The 
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PSO algorithm is useful independently of reactive power 
source type and power system structure: integration D-
STACTOM for radial systems [15], multi-objective capacitor 
allocation and sizing in distribution networks [16], all VAr 
sources management in power transmission system [17]. It 
can be applied for the optimal regulation capacity of the 
voltage regulating equipment at all times of a day to the 
optimization of load and loss reduction of distribution 
network [18]. The original method as a hybrid artificial 
neural network and PSO proposed in [19] to both 
optimizations of reactive power and voltage control.  

The PSO algorithm is successfully applied in the other 
optimization problems, such as scheduling problems [20, 
21], to represent distributed energy resources [22], the 
optimization size of distributed generation [23].The PSO 
algorithm was proposed by J. Kennedy and R. Eberhart, 
then improved these authors and Y. Shi to the version that 
is classical today and in subsequent years developed to 
one of the most popular and effective methods for solving 
optimization problems [24, 25]. It belongs to the class of 
Swarm Intelligence algorithms. The basis of the work of the 
swarm algorithms is the movement of agents-solutions to 
the problem in the multidimensional space of finding 
solutions with the indirect exchange of experience between 
them. 

We present the optimization problem as the problem of 
finding the minimum of the function f(X), where X is a vector 
of controlled variables. In this paper, the vector X specifies 
the number of tap regulated transformer network, and the 
function f(X) determines the magnitude of the active power 
losses in branches of a network. 

According to the scheme of the description of swarm 
algorithms proposed in [12], the PSO algorithm can be 
written as a tuple {S, M, A, P, I, O}. S refers to the set of 
agents of a swarm (particles); M means of indirect 
exchange of information between them; A is the rules of 
moving particles using heuristic parameters of the vector P. 
The elements I, O define input and output data flows when 
we implement the interface between the swarm algorithm 
and the problem to be solved. 

Each swarm particle from S is characterized by a vector 
of coordinates X in the search space D and the value of the 
optimality criterion f(X). The number of particles is s. Each 
particle has its variable velocity, vector V. Initially, the 
values of the elements of vectors X and V are chosen 
arbitrarily, X  D (xi  [0, 1], i = 1, … , d), d – is the 
dimension of the search space. Then, at each step of the 
algorithm, the vectors X and V for each particle are updated 
according to the following formulas [12, 21]: 

(2)  
1

2

( ) (0,1)

( ) (0,1)

V V Pb X random

M X random
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where Pb is the position of the particle with the minimum 
(best) value f(X) among all positions in which it was, 

M – position, similar to Pb, but for all swarm particles 
that is the best position among all tested,  

random(0, 1) is a vector of random numbers uniformly 
distributed from 0 to 1 (random vectors are generated for 
each iteration and each particle). The dimensions of the 

vectors are equal to the dimensions of the solution search 
space. Eq. (2) implies the element-by-element multiplication 
of vector components. 

The parameters α1 and α2 determine the degree of 
attraction of the particle to the individual best position Pb 
and the overall best position M. The parameter ω 
characterizes the inertia of the particles. Parameter β is a 
new parameter of the algorithm along with α1, α2, ω, it 
restricts the velocities of particles. Thus, the parameter 
vector P consists of {α1, α2, ω, β}. In the classic version of 
PSO parameter β missing as a parameter, that is always 
equal to one. Speed limit reduces the risk of missing the 
global optimum without complicating the algorithm. 

To implement the PSO algorithm to optimisation 
problem (1) we need to: 

• convert particle position X in Eq. (2), (3) to vector Tr 
in Eq. (1); 

• convert criterion value ΔP(Tr) + Stab(Tr) in Eq. (1) to 
f(X). 

It can be done as follows: 

(4)  
1, 1,...,

( ) ( ) ( )
i iTr mX i n

f X P Tr Stab Tr

    
  

 

 
If the simulation of the power system shows that the 

system mode is unstable, then the penalty function Stab(Tr) 
gets a value that is antecedently higher than the possible 
value of the power loss ΔP(Tr). Otherwise, it gets zero. So, 
solutions that lead to unstable mode will be much worse by 
the criterion f(X). 

 
Experimental comparison of the algorithms 

The GH algorithm was performed from the first 
transformer to the 17th, and then from the 17th to the first. 
Two runs were performed to demonstrate the dependence 
of the method on the initial approximation. 

The disadvantage of the PSO algorithm is the 
dependence on the values of the parameters used {α1, α2, 
ω, β}. In this case, it is theoretically impossible to choose 
universal values that are effective for all tasks. It is 
confirmed by practice [21, 26], and has a justification 
according to the No-Free-Lunch theorem [27]. Several sets 
of parameters recommended for a wide class of problems 
were taken for the PSO algorithm [21, 25, 26]:  

 
α1 = 1.5, α2 = 1.5, ω = 0.7, β = 0.1, 
α1 = 1.5, α2 = 1.5, ω = 0.7, β = 0.3, 
α1 = 1.5, α2 = 1.5, ω = 0.7, β = 1.0. 

 
The differences in β values are explained by the fact that 

for the parameters α1 = 1.5, α2 = 1.5, ω = 0.7 good 
efficiencies can be obtained without speed restriction. At the 
same time, the restriction should theoretically improve the 
quality of the obtained solutions, so the value 0.3 is taken, 
which showed high efficiency in the study [21] and the value 
0.1 since a further decrease in the maximum speed can 
negatively affect the ability of the algorithm to exit local 
extrema. The number of particles was chosen to be 50 and 
the number of iterations 50 and 500. 

The experimental results for the model of the considered 
power supply network are given in Table 3 and Fig. 1. 

Each line Idtap i (i = 1, …, 17) contains the position tap of 
i-th transformer recommended by an algorithm. The line 
"Losses, MW" contains active power losses in the lines of 
the power system. The line "Effect, MW" shows how much 
loss decreased as a result of the optimization by an 
algorithm.  
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Table 3. Comparison of the solutions of the algorithms 
Algorithm Current 

position 
GH 
1-17 

GH 
17-1 

PSO 
50 steps, 
β = 0.1 

PSO 
500 steps, 
β = 0.1 

PSO 
50 steps, 
β = 0.3 

PSO 500 
steps, 
β = 0.3 

PSO 
50 steps, 
β = 1.0 

PSO 
500 steps, 
β = 1.0 

Losses, MW 48.01 46.32 47.28 46.08 45.90 45.88 45.83 46.23 46.21 
Effect, MW 0 1.69 0.73 1.93 2.11 2.13 2.18 1.78 1.80 

Idtap 1 2 11 2 9 10 10 8 11 10 
Idtap 2 2 6 2 9 8 10 8 8 8 
Idtap 3 6 10 6 11 12 14 10 12 11 
Idtap 4 6 7 11 8 11 14 10 12 16 
Idtap 5 6 10 10 10 12 14 10 12 10 
Idtap 6 6 6 6 9 10 9 8 7 5 
Idtap 7 6 6 6 8 9 8 7 8 16 
Idtap 8 6 7 10 10 10 12 10 10 11 
Idtap 9 6 10 7 10 11 8 10 7 11 

Idtap 10 2 2 2 6 10 4 9 9 8 
Idtap 11 2 2 2 9 10 4 7 9 10 
Idtap 12 6 6 6 8 7 8 9 2 10 
Idtap 13 6 6 6 10 7 8 8 2 10 
Idtap 14 6 10 6 11 12 6 10 7 10 
Idtap 15 6 7 4 6 10 4 6 8 16 
Idtap 16 6 6 5 7 10 4 16 7 8 
Idtap 17 6 12 12 8 8 11 4 2 16 

Average Idtap 5 7 6 9 10 9 9 8 11 

 
Fig.1. Comparison of the effects of the algorithms 
 

Since the GH algorithm performed for the first time 
starting with the first transformer, then the second with the 
seventeenth, the results are given in two different columns 
(GH 1-17, GH 17-1, respectively). 

For the PSO algorithm Table 3 shows the number of 
steps of the algorithm and the value of the various 
parameter β that restricting particle velocities. 

The GH algorithm converged after four rounds of all 
transformers. The obtained differences in the results of one 
algorithm show how much the GH, like any greedy heuristic 
algorithm, depends on factors that are not directly related to 
the problem. 

It is due to the algorithm falling into various local 
extrema, depending on the order of traversal of controlled 
variables. It is seen that the effect of optimization changes 
2.3 times in different directions of search. However, even 
such a simple optimization method can save a significant 
amount of power at no cost other than creating a network 
model for its calculations. 

The PSO algorithm has shown higher efficiency than is 
directed too much in only 50 iterations. 

It should be noted that experiments with 50 and 500 
iterations were performed as two different runs. Without 
limiting the maximum speed, the efficiency of the PSO 
algorithm is significantly lower, and the choice of the 
parameter β value equal to 0.3 gave the best results. It can 
be concluded that without limiting the maximum speed (β = 
1.0), particles often "fly" past the neighborhood of the most 
effective extrema, and even once in them, can by inertia go 
back. In this case, too much speed limit (β = 0.1) worsens 
the search time of the effective solutions, hence the 
significant difference in solutions at 50 and 500 iterations. 

 
Conclusion 

The best solution to reduce the loss of active power in 
the system is achieved using the swarm Intelligence 
algorithm. When optimized using the swarm intelligence 
method in the network under consideration, it is possible to 
reduce the active power loss from 48.01 MW to 45.83 MW, 
i.e., by 2.18 MW or 4.5%. 

In the best solution, the average position of the 
transformer tap was equal to 9. Although, a priori it could be 
assumed that this value should be close to the maximum 
value of 16 since the loss of active power decreases with 
increasing voltage. This assumption can be valid for radial 
networks in which mutual influences of different network 
segments are weak. For the considered non-radial network, 
this assumption is refuted by the experiment. It is shown 
that the application of the PSO algorithm is more efficient 
and easier to implement than the greedy heuristic algorithm. 
The PSO algorithm provides satisfactory solutions without 
setting parameters. Nevertheless, it is shown that the 
correct choice of the restriction of the particle velocity can 
give an additional quality increasing. 
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