The Load Torque Influence on Time-Optimal Position Control Process

Abstract. The contribution of the paper is the theoretical development and obtaining the time-optimal position control process in conditions of heavy loading of the servo motor as a result of simulation tests. The influence of passive load torque and active load torque on the position controller output signal generation in its active state is described mathematically.

Streszczenie. Wkładem pracy jest opracowanie teoretyczne oraz uzyskanie optymalno-czasowego procesu regulacji położenia w warunkach silnego obciążenia silnika serwo w wyniku badań symulacyjnych. Opisano matematycznie wpływ pasywnego momentu obciążenia oraz aktywnego momentu obciążenia na sposób generowania sygnału wyjściowego regulatora położenia w jego stanie aktywnym. (Wpływ momentu obciążenia na minimalno-czasowy proces regulacji położenia).

Keywords: position control, dynamic programming, servo-drives, DC motor.
Słowa kluczowe: regulacja położenia, programowanie dynamiczne, serwonapędy, silnik prądu stałego.

Introduction

Users expect high performance [1, 2] from servo-drives not only in the steady state of their operation, but also in the transient state. The quality of the position control process in the transient state highly depends on the load torque [3]. The load torque influences the motor acceleration and deceleration in servo-drive [4]. Moreover, users expect time-optimal and without overshoot position control process not depending on the load torque character, whether it is active load torque or passive load torque [5,6,7].

Novelties of this paper are the simulation results of the optimal-time position control process without overshoot in conditions of heavy passive and heavy active load torque of the servo motor.

In paper, the DC motor linear model and nonlinear DC/DC transistor converter are utilized to obtain efficient position control system. DC motor model does not simulate nonlinearities of electromagnetic subsystem of motor [8], [9] and nonlinearities of the electromechanical subsystem [10,11,12,13,14]. However, the control system is simple in practical implementation as the result of simple assumed model.

Typically, the position control system consists of three control loops: current (electromagnetic torque) control loop, speed control loop and position control loop. Typically the PI controller are applied is control systems. However, PI type speed controller [14] always causes the speed overshoot and it can not be applied. In exemplary position control system [16] the optimization algorithm based on bee colony is applied to use high frequency switching transistor inverters. However, in paper [16] transistor inverter nonlinearities and load torque existence are completely neglected. Simulation results [16] are performed in no load state of servo motor.

Therefore, the current paper contribution is the simulation of highly loaded position control system.

The information about the load torque is necessary for accurate position control of loaded servo-drive. The load torque is typically estimated and compensated by the load torque estimator [3] allows obtaining time-optimal speed control process after rapid load torque steps.

In paper [2] the motion profile shows expected signals of position, speed and motor acceleration. In paper [1,2] maximal acceleration and maximal decelerations are the same. The current paper contribution is motion profile by simulation results containing signal of the motor voltage additionally. Furthermore, the simulation results reveal that, the maximal acceleration and the maximal deceleration are different, because of the high load and constant motor current (electromagnetic torque) in saturation state of speed controller.

The alternative sliding mode position control system [7] is resistant to load torque existence and parameters changes. However, sliding control method causes chattering effect. Therefore, the originality of this work is to develop a position control method characterized by minimal-time positioning process without overshoot and without chattering effect caused by electromagnetic torque ripples.

Paper is divided into parts. The first part attention is redirected on the fact that motor voltage consists of many step responses not depending on the shape of reference voltage. In the next part, information about mentioned fact is utilized to obtain mathematical equations for calculation the output signals of position controller during heavy servo motor loading. Next part contains simulation results that are new-time-optimal profile of highly loader servo-motor.

Significant original observation

Other scientific papers describing position control process do not utilize the fact that signals of the motor current i_m, the motor speed ω and the motor position θ are the compositions of many step responses after motor supply voltage steps.

To continue, in electrical drives, motors are typically supplied by transistor switching converters in order to decrease the energy losses in transistors. Typically, transistors are on or off. As the result, motor supply voltage u_m is equal to $+U_{DC}$ or $-U_{DC}$, according the converter structure shown in Fig.1.

![Fig.1. Structure of voltage source inverter supplying DC motor](image)

The fact, that motor voltage is constant between switching processes, draws to conclusion that signals of motor current i_m, motor speed ω and motor position θ can be analyzed as the composition of many step responses.
To sum up, the motor position and motor speed step responses can be utilized to overwork the new motor motion profile and the new position controller operation method.

The current, speed and position step responses of loaded DC motor

It is assumed that forcing motor voltage u_t is constant between switching processes:

\begin{align}
 u_t(s) &= -U_{DC} / s \\
 i_t(s) &= -T_L / s
\end{align}

As the result of assumption, the motor behaviour can be analysed as a composition of many step responses. To continue, motor current signal $i_t(t)$ during motor start up can be decomposed into many motor current step responses. Motor speed signal $\omega(t)$ during motor braking can be decomposed as many speed step responses. Motor position can be considered as composition of many position step responses on supply voltage steps, as follows:

\begin{align}
 i_r(s) &= \left(\frac{-U_{DC} - k_M \cdot \omega(0)}{L_r}\right) \cdot \left(\frac{1}{s}\right) + i_r(0) + \left(\frac{k_M}{J} \cdot \frac{T_L}{L_r}\right) \cdot \left(\frac{1}{s}\right) + \left(\frac{1}{s}\right) \cdot \left(\frac{k_M}{J} \cdot i_r(0) - T_L\right) + \omega(0) \\
 \omega(s) &= \left(\frac{-U_{DC} k_M - T_L R_r}{L_r}\right) \cdot \left(\frac{1}{s}\right) + \left(\frac{k_M}{J} \cdot i_r(0) - T_L\right) + \omega(0) \\
 \Theta(s) &= \left(\frac{-U_{DC} k_M - T_L R_r}{L_r}\right) \cdot \left(\frac{1}{s}\right) + \omega(0)
\end{align}

where:

\begin{align}
 T_r &= L_r / R_r \\
 a &= 0.5 \cdot \left(\frac{T_L}{L_r}\right) \cdot \sqrt{1 - 4 \cdot k_M^2 \cdot L_r} \cdot \left(\frac{R_s^2}{L_y}\right) \\
 b &= 0.5 \cdot \left(\frac{T_L}{L_r}\right) \cdot \sqrt{1 + 4 \cdot k_M^2 \cdot L_r} \cdot \left(\frac{R_s^2}{L_y}\right)
\end{align}

Exact solution of step responses

The three possible step responses characters can be expected depending on the relationship between electromagnetic time constant T_m and electromechnical time constant T_u of DC motor:

\begin{align}
 T_m &= \left(J \cdot R_r\right) / k_M^2 \\
 T_u &= \left(j_s / \omega(0)\right) - \left(i_r(0) / \omega(0)\right)
\end{align}

The non-periodical step responses happens when electromagnetic time constant T_m is greater than value $4T_u$ and as the result the step responses are controlled by position controller. The periodical critical step responses happens when electromagnetic time constant T_m is smaller than value $4T_u$, and as the result the motor speed and motor position step responses are controlled by position controller. The preparation process of the equation describing position controller operation is not finished. To continue, the exact solutions of motor current $i_t(t)$, motor speed $\omega(t)$ and position responses $\Theta(t)$ can be calculated as:

\begin{align}
 i_t(t) &= A_{1NP} \cdot \exp(-a \cdot t) + A_{2NP} \cdot \exp(-b \cdot t) + A_{3NP} + C_{1NP} \cdot \exp(-a \cdot t) + C_{2NP} \cdot \exp(-b \cdot t) + C_{3NP} + C_{4NP} \cdot t + \Theta(0) \\
 \omega(t) &= B_{1NP} \cdot \exp(-a \cdot t) + B_{2NP} \cdot \exp(-b \cdot t) + B_{3NP} \\
 \Theta(t) &= C_{1NP} \cdot \exp(-a \cdot t) + C_{2NP} \cdot \exp(-b \cdot t) + C_{3NP} + C_{4NP} \cdot t + \Theta(0)
\end{align}

where: A_{1NP}, A_{2NP}, A_{3NP}, B_{1NP}, B_{2NP}, B_{3NP}, C_{1NP}, C_{2NP}, C_{3NP}, C_{4NP} are constants depending on motor parameters and initial values of motor current $i_r(0)$, motor speed $\omega(0)$ and motor position $\Theta(0)$.
By analysis of equations (24), (25) and (27) we can come the conclusion that approximated description of motor current, motor speed and motor position step responses are the same not depending the character of step responses, whether step responses are non-periodical (10), (11), (12) or non-periodical critical (14), (15), (16) or periodic (20), (21), (22).

Formula describing position control error $\Delta \Theta$ is obtained under condition that the signal of the reference position is constant:

$\Delta \Theta(t) = \Theta_{\text{ref}} - \Theta(t)$

In equations (25), (26) and (29) the same sets of elements exist. It is the advantage, because by using symbolic substitution the computation process needs less processor operations.

Position controller operation

Equations (25), (26) and (29) describe the position controller operation according to Bellman dynamic programming method, as it is shown in Fig.2. Position control algorithm is performed in two steps. In the first step, the equation (29) is solved in order to obtain time t. Then time is substituted to equations (25) and (26) in order to obtain reference speed ω_{ref} and reference current i_{ref}.

It should be emphasized, that equations (25), (26) and (29) are calculated on the basis of estimated load current i_{L_e} [3,18,19] which is the ratio of the load torque T_L to the excitation coefficient k_M. Therefore, the conclusion is drawn, that equations describe the influence of the passive load torque and the active load torque on the position controller output signal in its active state.

Simulation investigations

Simulation is performed for two reasons. Firstly, the idea of the dynamic programming method in conditions of heavy loading of the servo motor is verified. Secondly, non-linear position controller is created as a program and tested. Simulation investigation is performed in Matlab-Simulink software with sample time: 10ns in order to neglect the integration errors. There are assumed the following DC motor model parameters: $R_r=4.65 \Omega$, $L_r=70\text{mH}$, $J=0.0328\text{kgm}^2$, $k_p=1.35\text{Nm/A}$, $J=83.68\text{ms}$, $T_{\text{ref}}=0.54\text{Nm}$ and DC/DC converter parameters: $U_{\text{DC}}=325\text{V}$, $I_{\text{MAX}}=5\text{A}$, $\Omega_{\text{MAX}}=6\text{rad/s}$.

Simulation results shown in Fig.3 and Fig.5 reveals that signal of motor speed has different sloped in transient state. It can be explained by the two facts existence. The first fact is that motor generates constant electromagnetic torque, because of limitation to maximal current I_{MAX}. Another fact is that the high load torque subtracts form the motor electromagnetic torque and causes higher or smaller motor acceleration. Simulation results in Fig.3 and active load in Fig.5 shows the time-optimal position control process without overshoot during heavy passive load. The control process is time-optimal, because it is performed with maximal forcing motor voltage U_{ref} and maximal limitations in servo drive that is with maximal current I_{MAX} and maximal speed Ω_{MAX}. The application of maximal voltage during position control process is documented in Fig.4 and Fig.6. The passive load torque causes that the maximal voltage is applied longer in active state of position controller, in Fig.4 and Fig.6d, whereas the active load torque causes that maximal voltage is applied longer in saturation stage of position controller, in Fig.6a and Fig.6b. The documented in Fig.4d and Fig.6d, the one switching process of voltage u_r reveals the lack of position overshoot, whereas the equality of the motor
torque compensation for zeroing position error (29).

The simulation results reveal the lack of position steps and motor current responses with active load torque influence on time-optimal position control process during servo motor deceleration during position control process. The simulation results reveal the lack of position overshoot of highly loaded servo motor.

To sum up, the new position controller is designed and the time-optimal position control process during servo motor heavy loading conditions is obtained. The passive and the active load torque influence on time-optimal position control process is visualized with simulation results and discussed. To continue, the heavy load torque causes that acceleration differs for motor deceleration during position control process. The simulation results reveal the lack of position overshoot of highly loaded servo motor.

Fig. 5. Motor position θ, motor speed ω, motor current i_t, and motor voltage u_t during time-optimal position control process with active load torque.

Fig. 6. Signals magnification depicted in Fig. 6 showing motor voltage u_t, steps and motor current i_t, step responses with active load torque.

Conclusion

This work was supported by Ministry of Science and Higher Education in Poland under work No. S/WE/1/2018.

Author: dr inż. Andrzej Andrzejewski, Politechnika Białostocka, Katedra Energoelektroniki i Napędów Elektrycznych, ul. Wiejska 45A, 15-351 Białystok, E-mail: a.andrzejewski@pb.edu.pl.

REFERENCES

