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Image reconstruction in ultrasound transmission tomography 
using the Fermat’s Principle 

 
 

Abstract. The article presents image reconstruction in ultrasonic transmission tomography using the Fermat principle. The application consists of an 
ultrasound tomograph built by the authors and an algorithm implemented to solve the problem of image reconstruction. The solution enables the 
analysis of processes taking place in the facility without interference. The obtained tomographic imaging can be a picture of the geometry of the 
examined area. This allows location in the analysed area. The work developed an algorithm based on the Fermat principle as a technique of low 
computational complexity for real-time image reconstruction using an ultrasound tomograph..  
 
Streszczenie. W artykule przedstawiono rekonstrukcja obrazu w ultradźwiękowej tomografii transmisyjnej z wykorzystaniem zasady Fermata. 
Aplikacja składa się z tomografu ultradźwiękowego zbudowanego przez autorów oraz zaimplementowane algorytmu do rozwiązywania zagadnienia 
rekonstrukcji obrazu. Rozwiązanie umożliwia analizę procesów zachodzących w obiekcie bez ingerencji. Uzyskane obrazowanie tomograficzne 
może być obrazem geometrii badanego obszaru. Pozwala to na lokalizację w analizowanym obszarze. W pracy opracowano algorytm oparty na 
zasadzie Fermata jako technice o niskiej złożoności obliczeniowej do rekonstrukcji obrazu w czasie rzeczywistym za pomocą tomografu 
ultradźwiękowego.. (Rekonstrukcja obrazu w ultradźwiękowej tomografii transmisyjnej z wykorzystaniem zasady Fermata). 
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Introduction 
The construction of a physical model of an ultrasonic 

tomograph is highly problematic due to the complexity of 
the acoustic phenomena necessary for modeling in the 
case of a heterogeneous environment of propagation of 
acoustic waves in small limited spaces [1]. The radial 
propagation model commonly used in transmission 
tomography turns out to be sufficient for effective detection 
of disturbances in the interior of objects and is used in 
commercial solutions, for example for non-invasive 
examination of the state of trees. The lack of the correct 
physical model does not allow us to fully understand 
phenomena occurring during imaging with the help of 
acoustic waves. Problems such as [2-14] are used to solve 
optimization problems. In tomography, methods [15-25] are 
used to solve the inverse problem. This work is a collection 
of numerical experiments that use the Fermat principle, 
originally used in optics, to better understand the process of 
acoustic wave propagation during tomographic 
measurements using ultrasound [26-40] to create a more 
precise solver for problems with ultrasound tomography.  

 
Algorithm 

Classical approach to modeling the ultrasonic 
tomographical system is to approximate the behavior of the 
system by the model of straight rays of propagation 
between two ultrasonic sensors. There are many works 
confirming the effectiveness of  such a solutions in the 
terms of reliable ability of imaging  positions of inclusions 
along the domain of tomographical system. The 
effectiveness of that types of models can be also confirmed 
by practical analysis of a measurement data from 
tomographical device. As the example Figure 2 shows the 
sensitivity visualization of the tomographical system. 
Presented visualization is made for one pair of sensor and 
is created  on  the basis of real measurement data with one 
air inclusion with water background. One can see that 
higher sensitivity is concentrated approximately along the 
line between the sensors. Despite that facts there is still no 
good physical model for the UST therefore any attempt of 
getting more insight in the field is desirable.   

Fermat's principle describe how disorder is spreading in 
inhomogeneous media. Classically, the Fermat principle for 
a light ray can be expressed as: if a light ray is moving from 

point A to B, in a heterogeneous optical medium, there will 
be a path that will minimize the transition time between 
these points. The current version of this principle says that 
the disorder, in a heterogeneous medium, propagates 
through stationary curves. The stationary condition means 
that the curve does not have to minimize the transition time, 
it is enough that it meets the necessary condition of its 
existence from the point of view of the variational calculus. 
 

 

Fig. 1. Measurement system. 

Due to the use in tomography, we consider a two-
dimensional space. Let us assume that the disturbance in a 
heterogeneous medium propagates from the point ܣሺݔ଴,  ଴ሻݕ
to point ܤሺݔଵ,  ଵሻ along the curve described in the Cartesianݕ
coordinate system with the functional dependence 
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ݕ        (1) ൌ  .ሻݔሺݕ

The inhomogeneity of the medium is determined by the 
function assigning to each point of the space the value of 
the propagation speed of the disorder at a given point:  
ݒ ൌ ,ݔሺݒ  .ሻݕ
The function of the transition time of the disturbance from 
point ܣ to point ܤ has the form 

(2) ܶሾݕሿ ൌ ׬ ,ݔሺܨ ,ݕ ݔᇱሻ݀ݕ ൌ
௫భ
௫బ

׬ ݂ሺݔ, ඥ1	ሻݕ ൅ ሺݕᇱሻଶ	݀ݔ,
௫భ
௫బ

 

where ݂ሺݔ, ሻݕ ൌ 	
ଵ

௩ሺ௫,௬ሻ
 

Let’s consider the Euler's differential equation for this type 
of functionals  
ܨ߲
ݕ߲

െ	
݀
ݔ݀

൬
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ᇱݕ߲
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െ ௬݂

ᇱଶݕ

ඥ1 ൅ ᇱଶݕ
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ଷ 
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1
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ቈ ௬݂ െ ௫݂ݕᇱ െ ݂

′′ݕ
1 ൅ ᇱଶݕ

቉ ൌ 0 

Hence the condition from Euler’s equation has a form 
 

(3) ௬݂ െ ௫݂ݕᇱ െ ݂
௬ᇲᇲ

ଵାሺ௬ᇲሻమ
ൌ 	0.    

The stationary condition for the transition curve y = y (x) 
means, therefore, that the curve is a solution to equation 
(3). 
 
Euler equation solution 
 By determining the second derivative from the Euler 
equation quoted above, we obtain the equation 
 

ᇱᇱݕ   (4) ൌ ሺ	1 ൅ ሺݕ′ሻଶ	ሻ ቀ	
௙೤
௙	
െ

௙ೣ

௙
    .ቁ	ᇱݕ

Using substitutions ݐ ൌ ,ݔ ଵݕ ൌ ,ݕ ଶݕ	 ൌ  ᇱ, this equation canݕ
be transform to the system of first order equations 
 

(5)  ൝
ଵݕ	
ᇱ ൌ 																																					ଶݕ

ଶݕ	
ᇱ ൌ ሺ1 ൅ ଶݕ

ଶሻ ቀ
௙೤
௙	
െ

௙ೣ

௙
ቁ	ଶݕ

  

In numerical experiments, it was assumed that in the 
working space of a tomograph (a circle with a radius ܴ ൌ 5	)  
there was a single circular inclusions with a radius ݎ௪ ൌ 1. 
To be able to solve the derived system of equations, the 
distribution of velocities of sound propagation in the working 
area was modeled with rotating surfaces with equations 
 

ሻݎଵሺݒ    (6) ൌ ሺܾ െ ሻݓ ቀ
௥మ೙

௥మ೙ାଵ
ቁ ൅ ܾ	݂݅									,ݓ ൒  ݓ

ሻݎଶሺݒ   (7) ൌ ሺݓ െ ܾሻ ቀ1 െ
௥మ೙

௥మ೙ାଵ
ቁ ൅ ܾ, ݂݅	ܾ ൏  ݓ

 
Because these functions boil down to one equation 
 

(8)   ݂ሺݔ, ሻݕ ൌ
ଵ

௩ሺ௫,௬ሻ
ൌ

஼ሺ௫,௬ሻ

ெሺ௫,௬ሻ
ൌ

ሺ௫మା௬మሻ೙ାଵ	

௕ሺ௫మା௬మሻ೙ା௪	
 

               

The idea of that model for distribution comes from the 
fact that functional series 

ܽ௡ሺݔሻ ൌ
௫೙

௫೙ାఘ೙
ݔ , ∈ ሾ0,൅∞ሿ for ݊ → 	∞ tends to the 

discontinuous unit jump at ݔ ൌ  hence by using big ,ߩ
enough value of ݊ one can approximate a discontinuous 
boundary of the inclusions. 
In the equations (6-8) ܾ is a speed associated with the 
background medium and ݓ is a speed of sound for the 
included object.  
Using the defined speed distribution, we get that   
 
௫ܥ   (9) ൌ ଶݔሺ݊ݔ2 ൅  ,ଶሻ௡ିଵݕ

௬ܥ		   (10) ൌ ଶݔሺ݊ݕ2 ൅  ଶሻ௡ିଵݕ
௫ܯ   (11) ൌ ௬ܯ,௫ܥܾ ൌ  .௬ܥܾ

Hence  
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ቁ.(13) 

 

That mean that  
 

ᇱᇱݕ  (12) ൌ 2݊ሺݔଶ ൅ ଶሻ௡ିଵሺ1ݕ ൅ ሺݕᇱሻଶሻ ቀ
௪ି௕

ெ஼
ቁ ሺݕ െ  .ሻ′ݕݔ

 
Hence the system of equations (5) takes the form 
 

(13)   ቊ
ଵݕ	
ᇱ ൌ 																																																																															ଶݕ

ଶݕ
ᇱ ൌ 2݊ሺݐଶ ൅ ଵݕ

ଶሻ௡ିଵሺ1 ൅ ଶݕ
ଶሻ ቀ

௪ି௕

ெ஼
ቁ ሺݕଵ െ ଶሻݕݐ

 

 
This system can be solved using numerical methods. In 

the case of this work, the one-step Runge-Kutta method of 
the fourth order was used. The initial condition imposed on 
 ଵ determines the location of the starting point of theݕ
disturbances while the condition for ݕଶ determines the initial 
direction of its propagation. 

For the purposes of the experiment, a beam of rays 
coming from one probe located at ሺെܴ, 0ሻ was considered. 
The beam consisted of 151 rays was propagating in the 
range of 	േ45°. 

At this point it is worth noting that the reconstructed 
curves in the general case do not formally form the curves 
described by functional equation (1), natural way to 
generalize the problem was usage of parametrical curves 
with a natural parametrization i.e. with a parameter 
associated with the partial length of the propagated curve. 
However, when trying to reformulate the task using the 
parametric description of the curves, two significant 
problems were encountered: 

Firstly, there is a theorem known from variational 
calculus: 
The sufficient and necessary condition for independency of 
the value of a functional  
 

׬    (14) ,ݐሺߠ ,ݔ ,ݕ ሶݔ , ሶݕ ሻ݀ݐ
௧మ
௧భ

 
 

from the parametrical description of the curve is that the 
function doesn’t explicitly depends on ݐ and is positively 
homogeneous due to the ݔሶ , ሶݕ .  
In our situation the functional meets the assumptions of that 
theorem therefore its value is independent from the 
parametric description of the curve. This freedom of 
parameterization greatly hinders the adoption of specific 
ranges for the parameter describing the curve, and thus 
makes it difficult to define the range to be solved by the 
obtained equation. Secondly, the parametric form of the 
equation is complicated so much that numerical errors 
cease to be negligible, and in extreme cases numerical 
solvers are not able to obtain a stable solution. 
To overcome that problems we exploit the features of the 
stepwise numerical methods of solving the differential 
equations. The stepwise methods allow, due to their nature, 
to break the calculations at the moment when the 
reconstructed curve distorts itself enough to cease to have 
a functional character in considered coordinate system. 
Written program to solve this system after detection of such 
a point, changes the axes of the coordinate system, and 
from the stopping point reconstructs the curve further but 
this time in the form of the function x = x (y). If the program 
encounters the same problem again, it can go back to the 
description in the form y = y (x). As a result, it is possible to 
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determine the entire curve, using a non-parametric 
description, by breaking the curve into disjoint parts that can 
be described in a functional manner.  
Let’s notice that for the curve of the form  
 

ݔ                        (15) ൌ  ,ሻݕሺݔ
 

associated functional is 
 

(16)   ܶሾݔሺݕሻሿ ൌ ׬ ݃ሺݔ, ሻඥ1ݕ ൅ ሺݔᇱሻଶ
௬భ
௬బ

 .ݕ݀
 

Notice that in the case of one inclusion centered in the 
domain  
 

(17)          ݃ሺݔ, ሻݕ ൌ ݂ሺݕ, ሻݔ ൌ ݂ሺݔ, ሻݕ ൌ
ሺ௫మା௬మሻ೙ାଵ	

௕ሺ௫మା௬మሻ೙ା௪	
, 

hence the Euler’s equation is 
 

(18)   ௫݂ െ ௬݂ݔᇱ െ ݂
௫ᇲᇲ

ଵାሺ௫ᇲሻమ
ൌ 	0 

 

And 
 

ᇱᇱݔ       (19) ൌ ሺ	1 ൅ ሺݔᇱሻଶ	ሻ ቀ	
௙ೣ

௙	
െ

௙೤
௙
 ,ቁ	ᇱݔ

 

what means that using analogous substitutions ݕ ൌ ,ݐ ଵݕ ൌ
,ݔ ଶݕ	 ൌ  ᇱ, the systems of DEs are equivalent so there is noݔ
need for solving another system after switching the 
coordinates.  
 

IV. Case of a off-center inclusion 
In the case when single inclusion is not centered in a tank 
the distribution of velocity is changed. If the centrum of the 
circular inclusion is located in a point ሺܽ, ܾሻ (in the ܱݕݔ 
plane) the functions in the time-of-fly functionals take the 
forms 
 

(20)   ݂ሺݔ, ሻݕ ൌ ݃ሺݔ, ሻݕ ൌ
ଵ

௩ሺ௫,௬ሻ
ൌ

஼ሺ௫,௬ሻ

ெሺ௫,௬ሻ
ൌ

ሺሾ௫ି௔ሿమାሾ௬ି௕ሿమሻ೙ାଵ	

௕ሺሾ௫ି௔ሿమାሾ௬ି௕ሿమሻ೙ା௪	
 

 

One can check that from properties analogical to (9)-
(13) the differential equations of second order are  
 

ᇱᇱݕ   (21) ൌ ܲሺݔ, ,ݕ ሻ′ݕ ቀ
௪ି௕

ெ஼
ቁ ሺ1 ൅ ሺݕᇱሻଶሻሺݕ െ ܾ െ ሺݔ െ ܽሻݕ′ሻ 

 

for curves of type (1) and  
 

ᇱᇱݔ    (22) ൌ ܲሺݔ, ,ݕ ᇱሻݕ ቀ
௪ି௕

ெ஼
ቁ ሺ1 ൅ ሺݕᇱሻଶሻሺݔ െ ܽ െ ሺݕ െ ܾሻݔᇱሻ 

 

for curves of type (18).  
where  
 

(23)    ܲሺݔ, ,ݕ ᇱሻݕ ൌ 	2݊ሺሾݔ െ ܽሿଶ ൅ ሾݕ െ ܾሿଶሻ௡ିଵ 
 

That means that, after the substitutions we end up with two 
non-equivalent systems:  
For curves of type (1) 
 

(24)  ቊ
ଵݕ
ᇱ ൌ ଶݕ
ଶݕ
ᇱ ൌ ሺ1 ൅ ଶݕ

ଶሻ	ቀ
௪ି௕

ெ஼
ቁ	ܳଵሺݐ, ଵݕሺ	ଵሻݕ െ ܾ െ ሺݐ െ ܽሻݕଶሻ

 

 

 
where ܳଵሺݐ, ଵሻݕ ൌ 2݊ሾሺݐ െ ܽሻଶ ൅ ሺݕଵ െ ܾሻଶሿ௡ିଵ. 
For curves of (18) 
 

(25)  ቊ
ଵݕ
ᇱ ൌ ଶݕ
ଶݕ
ᇱ ൌ ሺ1 ൅ ଶݕ

ଶሻ	ቀ
௪ି௕

ெ஼
ቁ	ܳଶሺݐ, ଵݕሺ	ଵሻݕ െ ܽ െ ሺݐ െ ܾሻݕଶሻ

 

 

 
where ܳଶሺݐ, ଵሻݕ ൌ 2݊ሾሺݐ െ ܾሻଶ ൅ ሺݕଵ െ ܽሻଶሿ௡ିଵ. 
 

Results 
In this part, we present the results of numerical 

experiments (Fig. 2) for inclusions (w = 350, w = 5500) 
immersed in water (b = 1600) and inclusion (w = 5500) in 
the air (b = 350).  

 

  

  

  

Fig. 2. Ray simulations I for the water background due to the 
location of the center point of circular inclusion. 

Conclusion 
In the article image reconstruction using the Fermat 

principle during tomographic measurements using 
ultrasound. The system consists of an ultrasound tomograph 
and an algorithm for solving the inverse problem for image 
reconstruction. Ultrasound transmission tomography enables 
the analysis of processes occurring in an object without 
interfering with it. The obtained tomographic imaging can be 
a picture of the geometry of the examined area. The 
presence of inclusions creates a lensing effect. The nature 
of the deflection depends on the relationship between the 
background parameter and inclusions. In the case of 
scattering, the reflection effect of the wave is clearer and 
less rays penetrate the inclusions. Regardless of the 
inclusions, the sensor covering effect is noticeable by 
diluting the beam. The thinning of the beam may translate 
into a decrease in the density of acoustic energy reaching 
the sensor, which may be the reason for the increase in the 
measured transition time - regardless of the material from 
which the inclusions are made.  
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