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Abstract. This article focuses on the extraction of features extracted from ECG measurement signals to improve the quality of LSTM network 
operation. Two features were distinguished from each individual sequence of ECG signals: instantaneous frequency (IF) and spectral entropy (SE). 
Both of these features are extracted from ECG signals using short-time Fourier transform. The applied approach enables the conversion of original 
measurement sequences into spectral images, from which IF and SE coefficients are then generated. As a result of the research, it was found that 
feature extraction significantly improves ECG signal classification both in terms of forecasting accuracy and in terms of network learning speed. 
 
Streszczenie. W niniejszym artykule skupiono się na ekstrakcji cech wyodrębnionych z sygnałów pomiarowych EKG w celu poprawy jakości 
działania sieci LSTM. Z każdej indywidualnej sekwencji sygnałów EKG wyróżniono dwie cechy: częstotliwość chwilową (IF) i entropię widmową 
(SE). Obie te cechy są wyodrębniane z sygnałów EKG przy użyciu krótkotrwałej transformaty Fouriera. Zastosowane podejście umożliwia konwersję 
oryginalnych sekwencji pomiarowych na obrazy widmowe, z których następnie generowane są współczynniki IF i SE. W wyniku badań stwierdzono, 
że ekstrakcja cech znacząco poprawia klasyfikację sygnału EKG zarówno pod względem dokładności prognozowania, jak i szybkości uczenia się 
siec). (Wpływ ekstrakcji cech na poprawę jakości sieci LSTM w klasyfikacji sygnału EKG). 
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Słowa kluczowe: klasyfikacja sygnałów EKG, sztuczne sieci neuronowe, uczenie maszynowe, analiza szeregów czasowych.. 
 
 

Introduction 
Over the past 20 years there has been a clear increase 

in the requirements for disease diagnostics software [1]. In 
addition to such features as reliability, efficiency or speed of 
operation, its automation has become an important 
determinant of the quality of medical software [2]. 
Automation is necessary for the development of 
technologies such as Internet of Things (IoT) [3], Body 
Sensor Network (BSN) [4]or Wearable Textronic Devices 
(WTD) [5]. IoT not only enables mutual machine-machine 
communication, but also has the ability to make 
autonomous decisions by devices. BSN systems operate on 
the basis of IoT. In turn, WDTs are necessary for the 
continuous and independent of visits to the doctor's office to 
collect data directly from the patient's body. As you can see, 
all these systems interpenetrate each other, creating a 
holistic environment whose key element is sensors and 
medical diagnostic software. 

ECG signal classification algorithms are an extremely 
important part of such software [1], [6]. Since cardiovascular 
disease is one of the leading causes of death in both the 
US and the world, effective diagnosis of heart disease is a 
must. It was noticed many years ago that time series or 
ECG measurement sequences can be classified using 
statistical or iterative methods [7]. However, the quality of 
these classifications was not sufficient to eliminate a doctor 
from the ECG signal interpretation process or, in other 
words, the diagnosis of the disease [5]. Without the need to 
involve a doctor, there can be no question of a real 
automation of the diagnostic process. To enable this, it is 
necessary to create a reliable cyberphysical system, 
equipped with sensors and an algorithm, generating 
repeatable results with 100% accuracy [8]. 

This article carried out research aimed at obtaining high-
quality results of ECG signal classification using the LSTM 
network. It was assumed that the barrier preventing the 
training of high accuracy LASM networks is data. Due to 
their noise and lack of full repeatability caused by various 
types of measurement disturbances and inaccuracy of the 
equipment used, the use of direct data makes it impossible 
to train the LSTM network with the desired accuracy of 
prediction. Therefore, the feature extraction method was 

used. Two features were distinguished from each single 
ECG signal sequence: instantaneous frequency (IF) and 
spectral entropy (SE). Spectrograms and short-time Fourier 
transform were used for this purpose. The LSTM network 
was trained both on the basis of direct measurements and 
on the basis of extracted IF and SE features. The obtained 
results clearly proved that in the examined cases the 
extraction of features enabled achieving full, 100% 
accuracy of classification, while the accuracy of 
classification for the raw ECG data was about 20% worse. 

 
Materials and methods 

There are many methods for solving complex 
algorithmic problems [9-24]. The research used the LSTM 
network consisting of 5 layers. The first layer contains 
single measurement sequences (first variant) or double 
sequences of the extracted features: IF and SE (second 
variant). The second layer in both variants contains 150 
hidden neurons (activations). The third layer of BiLSTM has 
128 hidden units. Layer four is a fully connected layer. It 
contains six binary neurons because there are so many 
classes identified by the LSTM network. The fifth layer is of 
the softmax type. Formula (1) shows the softmax activation 
function 
 

(1)               	

ሻݔሺݕ ൌ ݁ೝሺ௫ሻ ݁ೕሺ௫ሻ


ୀଵ

൘  

where 0  ݕ  1 and ∑ ݕ ൌ 1
ୀଵ . 

 

The last layer is the classification layer, which task is to 
calculate the cross entropy loss for classification problem 
with mutually exclusive classes. As a result of feature 
extraction, a single ECG signal sequence was replaced with 
two IF and SE sequences. Table 1 shows the structure of 
the LSTM network used, detailing the individual layers, 
numbers of activations, weights and biases. Figure 1 shows 
6 different classes of ECG signals, including 1 normal 
rhythm and 5 diseased. Figure 2 shows the same signals 
but in the form of an extracted IF feature. It can be seen 
that the transformed signals are significantly different from 



PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 97 NR 12/2020                                                                                  195 

the raw ECG signals. First of all, they are devoid of a large 
number of irrelevant details that make it difficult to correctly 
classify and interpret characteristic, repetitive sequences. 

 

Fig. 1. Raw ECG signals waveforms 
 

When comparing Figures 1 and 2, it is worth paying 
attention to the horizontal axes. Each of the ECG signals 
had a frequency of 1,000 Hz and a duration of 5 seconds, 
resulting in 5,000 measurements. The transformation of the 
ECG signal into IF significantly reduced the number of 
measurements. From each signal of 5,000 measurements, 
2 signals (IF and SE) with a length of 129 measurements 
were obtained. 

 
Fig. 2. Instantaneous frequency (IF) for each type of ECG signal 

 

 
Fig. 3. Examples of ECG signal spectrograms 
 

Figure 3 shows 3 sample ECG signal spectrograms for 
cardiovascular diseases such as PVC, Trachycardia, and 
VTach-160bpm. The differences in images visible to the 

naked eye are of paramount importance for the 
effectiveness and legitimacy of applying a deep neural 
network to this problem. It is well known that convolutional 
neural networks, which also include LSTM networks, work 
well in dealing with image classification problems. By 
transforming the signal into a 2D image, we can make 
better use of the properties of the LSTM network. Especially 
that such networks, due to their long-term and short-term 
memory, are particularly suitable for solving time series and 
signal prediction problems. 
 

Figures 4 and 5 show the LSTM network training graphs 
for unprocessed inputs, while Figures 6 and 7 show the 
same graphs but for the inputs transformed into 2 features 
extracted - IF and SE. It is clearly seen that the LSTM 
network trains better in the second variant, when the inputs 
are features extracted generated as based on a short-time 
Fourier transform. The quality assessment of the LSTM 
network training process was based on two indicators - 
accuracy and loss. The accuracy indicator is described by 
the firm formula (2) 

ሺ2ሻ ܿܿܣ ൌ
ܭ
ܭ
∙ 100% 

where: Kc – number of pixels reconstructed correctly, K – 
total number of pixels. 

The loss indicator is described by the formula (3) 

ሺ3ሻ ݏݏܮ ൌ െP݈݃ሺ ܻሻ
ே

ୀଵ

൘ܭ  

where: K – number of observations, N – number of 
responses, P – patterns, ܻ – outputs. 
 

 
Fig. 4. Training accuracy with a raw signal 
 

The quality of the LSTM network is the better the higher 
the accuracy and the lower the loss. In Figure 4 accuracy 
cannot exceed 80% and loss cannot fall below 0.5. Figures 
5 and 7 look quite different, where the training of the LSTM 
network after converting a single input, which is the raw 
EKG signal into a double sequence of IF (instantaneous 
frequency) and SE (spectral entropy) signals. 

 

 
Fig. 5. Training loss with a raw signal 
 

After the features are extracted, a similar LSTM network 
is able to achieve an accuracy of 100% and a loss of 0. 
Also, the shape of the training curve indicates its correct 
course.  
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Fig. 6. Training accuracy with IF and SE as input 
 

 
Fig. 7. Training loss with IF and SE as input 

The curve is hyperbolic. Although there are significant 
fluctuations initially, the line smoothes over time and 
eventually reaches an asymptote. Proper data preparation 
plays an important role. In the discussed case, 
oversampling was used as part of data preprocessing. The 
reason was the large variation in the number of ECG 
signals available to researchers. The entire data pool was 
3121. The largest number of reference signals, as many as 
1140, related to Normal_ECG. It was the best for 
Brachycardia - only 60. As the formal requirement for the 
proper training of the LSTM network was to equalize the 
number of signals for each of the 6 classes, it was decided 
that all signals would be duplicated to obtain the number 
1140. This was the oversampling used in the research. 
 
 

 

Table 1. Layers of LSTM neural network 
Layer # Layer description Activations Learnable parameters (weights and biases) 

1 Sequence input with 2 dimensions (IF and SE) 2 – 

2 BiLSTM with 150 hidden units 300 
Input weights: 1200×2; 

Recurrent Weights: 1200×150; Bias: 1200×1 

3 BiLSTM with 128 hidden units 256 
Input weights: 1024×300; 

Recurrent Weights: 1024×128; Bias: 1024×1 
4 Fully connected layer 6 Weights: 6×256; Bias: 6×1 
5 Softmax 6 – 
6 Classification output (crossentropy) – – 

 
Results 

Figures 8-11 show confusion matrices which are the 
classic prediction evaluation tool for classification problems. 
Figure 8 shows the training set confusion matrix for the 
case of an LSTM network processing the raw ECG signal. If 
all the cases were classified correctly, all the fields of the 
matrix arranged diagonally would contain 1080. Figure 7 
corresponds with Figures 4 and 5. Figure 9 shows the 
confusion matrix of the test set for the case of an LSTM 
network processing the raw ECG signal. As you can also 
see in this case, many tested signals were misinterpreted. 
However, it can be seen that for Brachycardia and 
Trachycardia, 100% correct classifications were obtained. 
This is quite surprising because the test set, as one that 
does not participate in the training process, is usually more 
difficult to correctly interpret by the neural network. In this 
case, it was probably different due to the small number of 
this set (only 60 test signals). 

 
Fig. 8. Confusion matrix for the training set with a raw ECG signal 
 

Figure 10 shows the confusion matrix for the training set 
after features extraction. Comparing this matrix with the 
matrix in Figure 8, a fundamental difference can be noticed. 
It turned out that after extracting the FI and SE features, the 
prediction accuracy increased significantly. In most of the 
diseases detected, it is 100%. Only 0.2% of the cases were 
wrongly assigned by the LSTM network as PVC instead of 
Normal_ECG. Figure 10 corresponds with Figures 6 and 7. 

 

 
Fig. 9. Confusion matrix for the testing set with a raw ECG signal 
 

 
Fig. 10. Confusion matrix for the training set after features 
extraction 

 
Fig. 11. Confusion matrix for the testing set after features extraction 
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Finally, Figure 11 shows the confusion matrix for the test 
set after features extraction. As can be seen, the 
transformation of a single ECG signal into the two features 
IF and SE made it possible to achieve the remarkable result 
of 100% accuracy for all disease categories. 
 
 Conclusions and discussion 

The results of the conducted research prove that 
appropriate preprocessing (oversampling) and feature 
extraction using spectral analysis and Fourier transforms 
significantly improve the efficiency of LSTM neural network 
classification in the problem of identifying cardiovascular 
diseases. Research similar to that described in this 
publication was conducted by researchers such as Salem, 
Taheri and Yuan [25] who applied Fourier Transform 
Spectrograms on the LSTM network achieved 97.2% 
accuracy. Other interesting examples of the use of the 
Wavelet Transform in the classification of ECG signals are 
the studies of W. Zhao et al., 2019 [26], Yildirim Özal, 2018 
[27], Isasi et al., 2019 [28]. Accuracy achieved reaches 
99.4%.  
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