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Abstract. In this paper, the new version of imaging algorithm for Ultrasound Transmission Tomography was presented. This algorithm was 
comprehensively tested with both synthetic and real measurement data. Different configuration of an internal objects were considered. In order to 
improve the quality of imaging the input data were treated by Principal Component Analysis. The algorithm proved its usefulness and its weak sides 
which have to be improved in the future. 
 
Streszczenie. W tym artykule przedstawiono nową wersję algorytmu w Ultradźwiękowej Tomografii Transmisyjnej. Przedstawiony algorytm był 
wszechstronnie przetestowany zarówno dla danych syntetycznych jak i na danych pomiarowych dla różnych konfiguracji obiektów wewnętrznych. W 
celu poprawienia jakości obrazowania, dane wejściowe poddane zostały Analizie Składowych Głównych. Zaproponowany algorytm wykazał się 
swoją użytecznością a także ujawnił swoje słabe strony, które w przyszłości mogą zostać usunięte.(Metoda optymalizacji i redukcja szumu PCA 
do ultradźwiękowej tomografii transmisyjnej) 
  
Słowa kluczowe: Transmisyjna Tomografia Ultradźwiękowa, Obrazowanie, Optymalizacja, Liniowe Ograniczenia Nierównościowe, Analiza 
Składowych Głównych. 
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Introduction 
The idea of optimization approach [1-11], among the 

others [12-16] is very popular for the inverse problem’s 
solution [17-19] and could be successfully applied in 
ultrasonic image reconstruction [20,21]. The paper 
concentrates on reconstruction algorithm based on 
synthetic and on real measurements provided by Netrix 
R&D company.  

The NETRIX tomograph [22] is working in transmission 
mode [23,24], so reflection signals are not measured. In this 
work all, simplifying assumption was introduced along with 
the fact that ultrasound wave is propagated along the strait 
lines.  

The problem solution is started with a certain number of 
the trial objects, randomly or rather with the certain 
algorithm, distributed inside the investigated region. Such a 
location of the candidate objects we will call the generalized 
starting point to the optimization process. 

The generalized starting point idea consists on the 
assumption that the object which is sought could be 
everywhere inside the region. 

 
a) b) c) 

  
 

 
Fig. 1: Generalized starting point. a) Candidates internal objects 
with the ray’s distribution. b) Results of the imaging and the real 
position of internal object denoted by black circle. c) The 
optimization processes 

 

So, in such case, knowing that the cross section of the 
internal object should be a circle, sixteen candidate circular 
objects are distributed inside the region under consideration 
as it is shown in Fig. 1a. 
 
The objective function and linear inequality constrain 
definition 

In order to fit calculated signal to the measured signal in 
each iteration step, the following objective function has 
been defined: 
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The objective function j , will be minimized 

considering given linear inequality constraints [25]. The j  

is Mean Squared Error (MSE) of image forming for j-th 
projection angle. The value of the total objective function for 
the given measuring data depends on matrix F . The matrix 
F  is defined in each iteration step by the solution of the 
forward problem. 

Each candidate internal objects possess three 
parameters defining their position and dimension. So, the 
total number of decision parameters (optimization 
parameters) is equal to 16*3=48. For those 48 decision 
parameters inequality constrains, must be imposed. 

Let us assume that the radius of the cross section of the 
object, must be a positive number along with the length of 
its position vector. That already complete 32 inequality 
constrains. Additionally, it could be assumed, however it is 
not necessary, that the angle of the position vector is 
positive as well. That increase the number of inequality 
constraints up to 48. 

The inequality constrains protecting against objects 
overlapping will take the following form: 

(2)  1 1 0 01i i i i wR r R r R * .      
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where: iR  is the length of the position vector for i-th internal 

object, ir  is the cross section radius of the internal objects 

(see Fig. 1b). 
Finally, the inequality constrains matrix will possess 64 

rows and 48 columns. 
 

The internal multi object imaging by optimization 
approach 
 The first two sections prove that optimization approach 
could be useful even in case of the real measurements. The 
generalized starting point to optimization process proved its 
flexibility providing nice results (see Fig. 1b). However, 
those results were achieved for a single obstacle inside the 
region. So, arise a question if equally good results could be 
possible to achieve for multi object of internal obstacle. 
 Let us start with four circular objects the same 
dimensions as in case considered in the first paragraph. 
Based on numerical experiment, this time the starting point 
was consisted with only 8 candidate objects which are 
shown in yellow colour in Fig. 3a. 
 As one can observe, during the optimization process, 
some of the candidate objects were shrank almost to zero 
(having no influence on final signal - see Fig. 2b) but four of 
them ideally to slot in the real position of the considered 
model shown in Fig. 2a.  
 
a) b) 

 

 

Fig. 2. a) Four internal obstacles. b) Synthetic „measured” noise 
free signal for 4 internal objects 
 
a) b) 

 

 

Fig. 3. a) Starting point marked by yellow colour and the final 
objects in green fitted in the real position of the model marked by 
dashed blue lines. b) Objective function value versus number of 
iterations 
 
 Referring to the Fig. 1 there are some essential 
differences. First, the signal is not measured but 
numerically generated and noise free. Secondly on the 
perimetry of the region instead 32 sensors we have only 21, 
causing imagining more difficult. Thanks to the synthetic 
noise free signal the results are very precise (see Fig. 3a). 
However, the optimization for that case demanded about 
4000 iterations when for the single object and with real 
measurements only about 450 iteration steps. 
 To see more clearly the difficulties of multi object 
imaging by optimization approach regarding the single 
object, let us consider the proximity effect based on four 
objects located in the middle of the region (see Fig. 4a). 

Additionally, the sensitivity has the lowest value in the 
centre of the region what rise the imaging difficulties. The 
starting point was the same and the result after about 5000 
iteration steps is presented in Fig. 5a. 
 Always for the tomography problems, a spatial 
resolution is very important. This algorithm has been tested 
for that purpose. The multi objects as small as 8 mm in 
diameter are “visible” for this algorithm. It is less than 2.5% 
of the diameter of the region under consideration. 
 The result marked by the green colour is presented in 
Fig. 5a. One can see the set of objects of the circular shape 
which are very close to the real position denoted by the blue 
dashed lines. 
 

a) b) 
 

Fig. 4. a) Model for proximity effect. b) Signal „measured” for the 
proximity case  
 
a) b) 

 

 

Fig. 5. a) Result of imaging. b) Iterations history 
 
a) b) 

 
Fig. 6. a) “Measured” signal after iteration process. b) Difference 
between “measured” signal (Fig. 4b) and the final one (Fig.6a) 
 
 This final set is producing the signal presented in 
Fig. 6a. Discrepancy between “measured” and final signal 
are shown in Fig. 6b. The maximum discrepancy is 8.75%. 
 
a) b) 

 

 

Fig. 7. a) Result of imaging for different starting point. b) Iterations 
history for a new starting point 
 

 It is a common knowledge that the optimization 
problems are very sensitive on the starting point selection. If 
the candidate objects become bigger and closer to the 



92                                                                             PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 96 NR 2/2020 

position of the real ones, the solution is different. Now the 
final image consists of one big obstacle presented in 
Fig. 7a.  
 Which solution better fit to the model to be imaged? It is 
hard to decide as both solutions provide almost the same 
signal as “measured” one with precision less than 10%. 
 
The internal multi object imaging: the real 
measurement case 
 In previous sections algorithm was presented for single 
object imaging using the real measurements and for more 
difficult problem like the ones presented in Fig. 2a. For 
synthetic and noise free data behaviour of the algorithm in 
case of multi objects was satisfactory. Now it is time to 
make the next step and move to the imaging with real data 
for four objects. The region and the location of the objects 
inside are shown in Fig. 8a [1]. 
 

a) b) 

 
Fig. 8. a) General view of the tank with four objects inside. b) 
Best image achieved by proposed algorithm 

 
 In the Fig. 8b there is the best image which was 
achieved by proposed algorithm. However, results are not 
stable. A small change in the starting point or in the 
inequality constraints cause a dramatic change in the final 
image. This situation is illustrated in the Fig. 9a. 
 
a) b) 

 

 

 

Fig. 9. a) Final image after changing inequality constraints. b) 
History of optimization 
 
Noise Suppression by The Principal Component 
Analysis 
 The Principal Component Analysis (PCA) has three 
basic applications [26]: 1. pre-processing for empirical 
modelling, 2. data compression and 3. noise suppression. 
In this section the third application for the noise suppression 
will be presented. 
 The Statistics Toolbox have, the functions like princomp 
and zscore, but only base MATLAB functions would be 
used in this paper. The basic idea is that the variance 
captured by the least important principal components 
represents noise which should be rejected.  
 Dropping the last principal components means 
elimination some of the noise what could improve the 
ultrasound imaging what is presented in Fig. 10. 
 This process is like the PCA data compression process 
with two exception [26]: 1. discarded components have their 
coefficients set to zero instead of being deleted and 2. the 

PCA coefficient matrix and its inverse are multiplied 
together to reduces noise in the data. 
 As one can see in Fig. 10a are the results without the 
PCA but Fig. 10b presents results with PCA. Application of 
PCA produce much better results in comparison to the 
results without of PCA. However after application of the 
PCA still one object is missing but the objects sizes are on 
the edge of “visibility” by the proposed algorithm. The 
radiuses of the objects are less than 5.6% and still results 
are not bad. 
 Looking at the history of the optimization process for the 
case when PCA is applied the number of iteration is more 
than two times bigger but the value of the objection function 
drops one order lower as one can see in the Fig 10b. 
 

a) b) 

Fig. 10. Results of imaging a) without PCA and b) with PCA 
 
Conclusion 
 In this paper new algorithm for Ultrasound Transmission 
Tomography was presented. Based on experiments with 
numerical and measurements data conclusion can be 
stated as follows: 

1. The algorithm for one internal object provides 
stable and precise images. 

2. For multiple internal objects algorithm has some 
difficulties to provide stable results. 

3. In order to improve the results advanced 
conditioning of measurements like PCA was 
applied giving better results. 

 As a final thoughts, one can say that the PCA is a 
powerful tool, and is quickly computed on current 
computers, even on large data. While there are limits to 
what it can do, it is a handy tool which is inexpensive in 
terms of compute time. 
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