Analysis of vertical and horizontal flows of liquids and gases through a wire-mesh sensor

Abstract. W artykule przedstawiono analizę pionowych i poziomych przepływów cieczy i gazów przez czujnik z siatki drucianej. Rozwiązanie nie wymaga skomplikowanej rekonstrukcji programu, która charakteryzuje się bardzo dużą prędkością działania w zależności od zastosowanego konwertera analogowo-cyfrowego. Czujnik składa się z dwóch części: modułu akwizycji i części robockiej. Urządzenie umożliwia badanie przepływów wielofazowych oraz klasyczne badanie pęcherzyków powietrza. Przewody jednej płaszczyzny są używane jako nadajniki, a przewody drugiej płaszczyzny jako odbiorniki. Próbki ze wszystkich linii odbiorczych są pobierane w tym samym czasie.

Streszczenie. The article presents the analysis of vertical and horizontal flows of liquids and gases through a wire mesh sensor. The solution does not require complicated reconstruction of the program, which is characterized by a very high speed of operation depending on the analog-to-digital converter used. The sensor consists of two parts: the acquisition module and the working part. The device allows testing of multiphase flows and classic air bubble testing. The wires of one plane are used as transmitters, and the wires of the other plane as receivers. Samples from all receiving lines are taken at the same time. (Analiza pionowych i poziomych przepływów cieczy i gazów przez czujnik siatkowy).

Keywords: wire-mesh sensor, two-phase flow.

Słowa kluczowe: sensor siatkowy, przepływ dwufazowy.

Introduction

Wire-mesh sensor is a device for invasive imaging of vertical and horizontal flows of liquids and gases [1,2,4]. It does not require any complicated software reconstruction, which is why it is characterized by very high operating speed, which depends to the greatest extent on the conversion time of the analog-to-digital converter used. The sensor consists of two parts: the acquisition module and the working part [4] [5]. The device allows testing of multiphase flows and classic testing of air bubbles that are usually performed in air-lift reactors [9]. Sensors are also suitable for testing various types of surface flows and movement of bulk materials along the bottom of a pipeline due to their high time resolution [2] [3,7,8]. The price for very high efficiency is, of course, invasiveness, but research shows the level of uncertainty of measuring these devices oscillating around 10% [6].

There are several types of WMS that differ in their mode of operation or design, among which the most important can be listed:

- impedance (also called conductance) - using voltage measurement between transmission and measuring lines (used in the described project),
- capacitive [2,5,10] - using the measurement of capacitance between transmission and measuring lines, enables measurements of non-conductive media,
- thermal [7] - using thermistors connecting transmission and reception lines,
- three-plane - having an additional plane of receiving lines.

The method of operation of the device (regardless of its design) comes down to transmitting signals on the transmission lines and measuring these signals on the receiving lines. Transmission and measurements take place in a specific sequence - for each individually activated transmission line there are measurements on all receiving lines. After completing a single cycle of all beats and the measurements assigned to them, the control system has numerical data about one frame of the image. It can immediately show it on the display, no image reconstruction is required. The specific value of the tested size (voltage, capacity) is assigned a specific pixel color as each pixel is in fact the point of intersection of one transmission line with one receiving line. The WMS sensor data acquisition speed depends on the transducer used, the microprocessor system controlling the entire device, the working time of the keys, decoders and the LCD screen as well as the operating mode. In this project, the screen has the greatest impact on speed, limiting it to the refresh rate by default. This gives a result of 61.5 thousand measurements per second with a single sampling. The actual measuring speed of the device is much higher, but it has not yet been the subject of detailed research. It will be obtained for offline imaging, i.e. collecting measurement data and then subsequent visualization in a higher time resolution on a computer. The presented project can be an important element in complex systems in process tomography [11-26] and optimization solutions [27-37].

Control system

The control system used in the project is a 32-bit STMicroelectronics STM32F429I-DISC1 microcontroller located on the STM32F429i-DISC1 development board. It was built based on the high-performance ARM Cortex M4 core, has 2 MB flash memory and 256 KB RAM. The development board is equipped with a 2.4-inch QVGA TFT LCD display. The screen uses the LTDC (LCD TFT Display Controller) and the aforementioned RAM, thanks to which it is possible to achieve high data transfer speeds with a 24-bit color palette.
The resistive touch layer of the screen communicates with the microcontroller using the SPI protocol in half-duplex mode. STM32F429I-DISC1 has an integrated ST-LINK / V2 programmer, with which you can quickly program the system. The board is powered by a microUSB socket. STMicroelectronics provides free software: TouchGFX Designer with a library of libraries and TouchGFX extensions for creating graphical interfaces, STM32CubeMX for initial equipment configuration and STM32CubeIDE for creating embedded software, debugging code, compiling it and communicating with the programmer.

The embedded software of the control system operates on the basis of the FreeRTOS real-time system. In separate threads it supports the operation of the control system itself, the LCD screen and operations related to controlling the data acquisition module. This design, based on data queuing, facilitates the management of transmitted results and synchronization of data acquisition with the displayed image.

Data acquisition module

The data acquisition module of the WMS type sensor presented in this work is powered from an external DC source with voltage + 5 V and symmetrical ± 9 V. It can be controlled via any external microprocessor system in the 3 - 5V range logic (in this case 3V from the system STM32F429I-DISC1). The acquisition module includes both a sending and receiving part. The transmission transmits the excitation signal to the working part in the form of a sequence of pulses on individual transmission lines. This signal is fed to the sensor from the outside and switched by the module using analog keys controlled using decoders. The receiving part of the acquisition module detects the set signals and determines their level using an analog-to-digital converter. Then the numerical data is directly processed into an image, where each signal level is assigned the appropriate color of pixels.

WMS sensors are characterized by very high speed of work. The shortest acquisition time is achieved in multi-transducer systems in which each receiving line is connected to a separate analog-to-digital converter. Then the numerical data is directly processed into an image, where each signal level is assigned the appropriate color of pixels. The working part of the sensor

The working part of the sensor is made of 0.08 mm thick, uninsulated, gold-plated molybdenum wires stretched on a dielectric frame. 32 parallel send lines are placed perpendicular to 32 parallel receive lines and are two planes separated by 2.5 mm spacing. Thanks to this, in the absence of flow of the tested medium, they are not physically or electrically connected with each other. The lines on each plane are 2.7 mm apart. The intersection points of the transmitting and receiving lines correspond to the pixels of the received image. The impedance level at these points is represented on the screen of the control device using the appropriate color.
The working part of the sensor is placed at the connection of pipes with the tested medium in such a way that all lines are in the light of the internal diameter of the pipeline. The connection between the working part and the data acquisition module are two 40-pin IDC tapes.

Construction work

Construction works carried out at the Research and Development Center Netrix S.A. were intended to create a full-size device 32 x 32 lines, i.e. a size not seen in the literature. This posed new challenges for the designer, mainly related to the speed of acquisition and the way of presenting the results. Additionally, due to the large number of sending and receiving channels, the data acquisition module has been designed on a four-layer laminate. The upper and lower layers are used to carry signals. The middle two are digital ground and power lines. The work carried out so far has involved the development of two versions of the working part and two prototypes of the acquisition module. The last prototype is currently in the phase of embedded software optimization and testing. The first prototype of a separate data acquisition module was used to develop the firmware of the ARM STM32 chip controlling the WMS sensor. It was also intended to show preliminary estimates of the quality and pace of work of the entire device. The second prototype contains important structural corrections and crowns the structural part of the research and development process of this project.

It contains a number of changes, which include:

- replacement of analogue-digital converters for many times faster,
- adding passive interference protection in the working part,
- redesigning the power lines to facilitate the analysis of installation problems,
- redesigning the excitation signal line,
- adding a buffer on binary decoder control lines to increase compatibility with different levels of logic signal voltages,
- adding a second buffer on digital data transmission lines in order to improve transmission quality and increase compatibility with various voltage levels of logic signals,
- redesigning measuring amplifier circuits in the receiving section,
- reducing the number of sockets for communication with the control device,
- moving all sockets to the upper part of the system,
- placing full descriptions on the PCB descriptive layer,
- any design changes to achieve the above (adding additional filters, voltage stabilizer, etc.).

The presented set of the most important components has already been tested in previous research and development projects of Netrix S.A. on process tomography as reliable, easy to implement and later use. The device can record measurement results at high speed for later analysis and off-line image analysis. It can also adjust the pace to the refresh rate of the LCD screen with e.g. simultaneous multiple sampling. When using a control system based on the ARM STM32F4 architecture, the estimated off-line imaging speed is above 1000 frames per second with a single sampling.

Other work to be done includes corrections to the embedded control system software and appropriate research on the operation and effectiveness of the device. In addition, the impact of the construction of the working part on the quality of the received images will be determined. Ultimately, the optimally constructed working part will be placed in the multiphase flow test kit.

Conclusion

The article presents the Wire-mesh sensor project. It is a device used for invasive imaging of vertical and horizontal flows of liquids and gases. It does not require any complicated software reconstruction, which is why it is characterized by very high operating speed, which depends to the greatest extent on the conversion time of the analogo-to-digital converter used. The sensor consists of two parts: the acquisition module and the working part. The speed of the device depends on the microprocessor system used to control the entire system. The device will be able to record measurement results at high speed for later analysis and analysis of the off-line image. When using the ARM STM32F4 architecture control system, the estimated speed is above 1000 frames per second for a single sample.

Authors: Tomasz Rymarczyk, Ph.D. Eng., University of Economics and Innovation, Projekowa 4, Lublin, Poland/ Research & Development Centre Netrix S.A. E-mail: tomasz@rymarczyk.com; Jakub Szumowski, Research & Development Centre Netrix S.A., E-mail: jakub.szumowski@netrix.com.pl; Tomasz Cieplak Ph.D., Lublin University of Technology, Nadbystrzycka 38A, Lublin, Poland, E-mail: t.cieplak@pollub.pl; Konrad Niderla, University of Economics and Innovation, Projekowa 4, Lublin, Poland/ Research & Development Centre Netrix S.A. E-mail: konrad.niderla@netrix.com.pl; Przemysław Adamkiewicz, Ph.D., University of Economics and Innovation, Projekowa 4, Lublin, Poland/ Research & Development Centre Netrix S.A. E-mail: p.adamkiewicz@netrix.com.pl;

REFERENCES
