Uniwersytet Łódzki, Wydział Fizyki i Informatyki Stosowanej

Magnes Bittera wykonany z wolframu i chłodzony ciekłym helem

Streszczenie. Opisano projekt magnesu Bittera wykonanego z płyt wolframowych i chłodzonego ciekłym helem o temperaturze 4,2 K. Obliczono indukcję pola magnetycznego wytwarzanego przez ten magnes, jego moc zasilania i parametry układu chłodzenia. Moc ta jest ok. 10⁴ razy mniejsza, niż moc zasilania powszechnie używanych magnesów Bittera wykonanych z miedzi i chłodzone wodą. Wykazano wykonalność tego magnesu przy użyciu dostępnych obecnie możliwości technicznych.

Abstract. The project of the Bitter magnet made of tungsten plates and coiled by liquid helium in temperature of 4 K is described. The magnetic flux density produced by this magnet, power supply and coiling system parameters are calculated. This power is about 10⁴ times smaller than power of commonly used Bitter's magnets made of cooper and coiled by water. Feasibility of this magnet by using of the present accessible technical aids is demonstrated. (**Bitter magnets made of tungsten and coiled by liquid helium**).

Słowa kluczowe: pole magnetyczne, wytwarzanie, wolfram, ciekły hel, magnes Bittera, chłodzenie. **Keywords:** magnetic field, production, tungsten, liquid helium, Bitter magnet, cooling.

Wstęp

Silne pola magnetyczne mają wiele zastosowań zarówno w badaniach naukowych jak też w nowoczesnych technologiach. Jednym ze spektakularnych wyników zastosowanie tych pól w badaniach naukowych jest odkrycie całkowitego i ułamkowego kwantowego efektu Halla, które zachodzą tylko w niskich temperaturach i polach o indukcji kilkunastu tesli [1]. Silne pola magnetyczne stosowane są też w fizyce jądrowej do kierowania i ogniskowania wiązki cząstek oraz kompresji plazmy w badaniach kontrolowanej syntezy termojądrowej [2-5]. Silne pola magnetyczne są również niezbędne do generowania promieniowania synchrotronowego [6, 7]. W procesach technologicznych pola te są wykorzystywane do produkcji magnesów trwałych, badania właściwości nowych materiałów w tym nadprzewodników do modyfikacji struktury materiałów i rozdzielania mieszanin. Silne pola magnetyczne mają też szerokie zastosowanie w badaniach struktury różnych obiektów metodą NMR, zwłaszcza w obrazowej diagnostyce medycznej, a także do badania zjawisk transportu w ciałach stałych [8].

Silne pola magnetyczne można podzielić na stałe i impulsowe [9, 10]. W obu przypadkach wytwarzanie tych pól wymaga pokonania dużych trudności technicznych [11, 12]. Wytwarzanie stałych pól magnetycznych przy użyciu cewek pracujących w temperaturze pokojowej wymaga ich intensywnego chłodzenia. Zastosowanie cewek wykonanych z nadprzewodników jest ograniczone do indukcji wyznaczonej przez pole krytyczne i również wymaga chłodzenia ciekłym helem, albo azotem [13]. Czas trwania i indukcja pól impulsowych są ograniczone przez szybkość dostarczania energii do cewki, jej wytrzymałość mechaniczną, cieplną i impedancję [14, 15]. Wytwarzanie najsilniejszych pól magnetycznych o indukcji powyżej 10³ T użyciu wybuchowej kompresii strumienia przv magnetycznego powoduje zniszczenie cewki i części układu eksperymentalnego [16, 17].

Z tego powodu poszukuje się nowych metod wytwarzania silnych pól magnetycznych. W tym celu stosuje się, np. mikrocewki, paczki cząstek przyspieszonych w akceleratorach, układy magnesów i cewek o zoptymalizowanym kształcie oraz stopy o większej wytrzymałości mechanicznej i przewodności elektrycznej [18-23]. W artykule został przedstawiony projekt zastosowania do wytwarzania silnych pól magnetycznych cewki typu Bittera wykonanej z wolframu chłodzonego ciekłym helem. Wolfram wykazuje bardzo interesujące właściwości, które polegają na tym, że przechodzi w stan nadprzewodnictwa dopiero w temperaturze 0,0015 K i

przejście zachodzi jedynie w cienkich warstwach tego metalu. Co najważniejsze, w temperaturze kilku Kelvinów charakteryzuje wolfram się szczególnie niską rezystywnością, znacznie mniejszą niż inne metale w tej temperaturze. Rezystywność wolframu w temperaturze 4,2 K $\rho_0 = 2,67 \cdot 10^{-13} \Omega m$ [24]. Dla porównania rezystywność miedzi w tej temperaturze $\rho_m = 2,21 \cdot 10^{-11} \Omega m$ [25]. Ponieważ wolfram zachowuje stan rezystywny, to indukcja pola magnetycznego wytwarzanego przez uzwojenie wykonane z tego metalu nie jest ograniczona przez pole krytyczne, jak w przypadku magnesów nadprzewodzących. bardzo Oprócz tego wolfram wykazuje wysoka wytrzymałość mechaniczną, która zapewnia duża odporność cewki na rozerwanie. Z tych powodów wolfram chłodzony ciekłym helem jest obiecującym materiałem do budowy cewek wytwarzających silne pola magnetyczne.

Indukcja pola

Rozpatrzony zostanie magnes Bittera składający się z pakietu płyt w kształcie pierścieni, przeciętych wzdłuż promienia (rys. 1, 2). Każda z płyt obrócona jest względem sąsiedniej płyty o pewien kąt i oddzielona warstwa izolacyjną, która nie pokrywa wąskiego sektora w pobliżu krawędzi przecięcia. Sąsiednie płyty kontaktują się ze sobą tymi sektorami. Dzięki temu płyty tworzą spiralne uzwojenie. Ponadto w płytach wykonane są otwory, pokrywające się ze sobą i regularnie rozmieszczone. Otwory te tworzą osiowe kanały, przeznaczone do przepływu czynnika chłodzącego. Płyty zostały ściśnięte podłużnymi śrubami w celu zapewnienia odpowiedniej wytrzymałości mechanicznej. Pakiet takich płyt umieszczony jest w naczyniu, przez które przepływa czynnik chłodzący. Dla uzwojenia o przekroju prostokątnym wprowadza się charakterystyczne parametry α , β zdefiniowane wzorami:

(1)
$$\alpha = \frac{r_2}{r_2}$$

$$\beta = \frac{l}{l}$$

 r_{1}

Te parametry pozwolą uprościć zapis wzorów otrzymanych w dalszej części artykułu.

Prąd o natężeniu *dI*, płynący w elementarnym pierścieniu wydzielonym z uzwojenia, wytwarza pole magnetyczne o indukcji, której wartość zostanie oznaczona symbolem *dB*. Zgodnie z oznaczeniami przyjętymi na rys. 3 dla pierścienia kołowego o promieniu *r* można zapisać

(3)
$$dB = \frac{\mu_0 r^2 dI}{2(r^2 + x^2)^{3/2}}$$

gdzie $\mu_0 = 12,56 \cdot 10^{-7}$ (Vs)/(Am) oznacza przenikalność magnetyczną próżni. W magnesach Bittera gęstość prądu *j* z płycie jest funkcją odległości *r* od środka płyty i wyraża się wzorem

$$(4) j(r) = j_0 \bigg($$

Rys.1. Szczegóły budowy uzwojenia magnesu Bittera: a) widok ogólny płyty, b) przekrój podłużny, c) widok z góry; 1 – płyta przewodząca, 3 – warstwa izolacyjna, 3 – kanał chłodzący, g_1 , g_2 – grubości odpowiednio: płyty przewodzącej i warstwy izolacyjnej, d_k – średnica kanału chodzącego

Rys.2. Podstawowe wymiary uzwojenia magnesu Bittera; r_1 , r_2 – promienie odpowiednio: wewnętrzny i zewnętrzny, l – długość

Zgodnie ze wzorem (4) gęstość prądu osiąga maksymalną wartość j_0 na brzegu otworu płyty (dla $r = r_0$) i maleje odwrotnie proporcjonalnie do odległości od środka płyty. Jest to spowodowane wzrostem oporu elektrycznego zewnętrznych elementów płyty, który jest wprost proporcjonalny do ich obwodu. Natężenie prądu dI w pierścieniu wyraża się wzorem

$$dI = j(r)dxdr$$

Po podstawieniu wzorów (4) i (5) do wzoru (3) otrzymuje się

(6)
$$dB = \frac{\mu_0 j_0 r_1}{2} \left[\frac{r dx dr}{(r^2 + x^2)^{3/2}} \right]$$

Indukcję pola magnetycznego B_1 w punkcie znajdującym się na osi magnesu w odległości x_1 od jego końca oblicza się przez następujące całkowanie

(7)
$$B_{1} = \int_{x=0}^{l_{1}} \int_{r-r_{1}}^{r-r_{2}} dB + \int_{x=0}^{x=l-l_{1}} \int_{r-r_{1}}^{r-r_{2}} dB$$

Pierwsze całkowanie wzoru (6) po promieniu r daje użyteczny wzór na indukcję pola magnetycznego ΔB , wytwarzanego przez pojedynczą płytę na jej osi w odległości x od środka płyty

(8)
$$\Delta B = \frac{\mu_0 j_0 r_1}{2} \left[\frac{1}{\sqrt{r_1^2 + x^2}} - \frac{1}{\sqrt{r_2^2 + x^2}} \right]$$

Po drugim całkowaniu otrzymuje się dla B_1 następujący wzór

$$(9) \quad B_{1} = \frac{\mu_{0} j_{0} \lambda r_{1}}{2} \ln \left[\alpha^{2} \left(\frac{l_{1} + \sqrt{r_{1}^{2} + l_{1}^{2}}}{l_{1} + \sqrt{r_{2}^{2} + l_{1}^{2}}} \right) \left(\frac{(l - l_{1}) + \sqrt{r_{1}^{2} + (l - l_{1})^{2}}}{(l - l_{1}) + \sqrt{r_{2}^{2} + (l - l_{1})^{2}}} \right) \right]$$

Rys.3. Schemat do obliczania indukcji pola magnetycznego wytwarzanego przez magnes Bittera; $d\mathbf{B}$ – przyczynek do indukcji pola w punkcie A, *r*, *dr*, *dx* – odpowiednio: promień, szerokość i wysokość pierścienia, *x*, *l*₁ – odległości pierścienia odpowiednio od: punktu A i od końca uzwojenia, *j(r)* – gęstość prądu w pierścieniu, symbole: *r*₁, *r*₂, *l* mają takie samo znaczenie jak na rys.2

Ponieważ w uzwojeniu znajdują się kanały chodzące i warstwy izolacyjne, więc prąd nie płynie w jego całej objętości. Z tego powodu do wzoru (9) należało wprowadzić parametr λ , który uwzględnia ten fakt. Jest to współczynnik wypełnienia, zdefiniowany jako stosunek objętości części uzwojenia wypełnionej przez materiał przewodzący prąd do całej objętości tego uzwojenia. W celu obliczenia indukcji pola magnetycznego B_0 w środku uzwojenia należy podstawić $l_1 = l/2$ do wzoru (9) oraz wykorzystać wzory (1) i (2). Wtedy otrzymuje się

(10)
$$B_0 = \mu_0 j_0 \lambda r_1 \ln \left[\frac{\alpha (\beta + \sqrt{1 + \beta^2})}{\beta + \sqrt{\alpha^2 + \beta^2}} \right]$$

Założono, że uzwojenie będzie miało następujące wymiary: promienie płyty: wewnętrzny $r_1 = 20$ mm,

zewnętrzny $r_2 = 300$ mm i długość l = 480 mm. Dla tych wymiarów, ze wzorów (1) i (2), otrzymuje się wartości parametrów: $\alpha = 15$ i $\beta = 12$. Ponadto przyjęto maksymalną gęstość prądu $j_0 = 250$ A/mm² i współczynnik wypełnienia λ = 0,8. Po podstawieniu tych wartości do wzoru (10) otrzymano $B_0 = 12,29$ T. Korzystając ze wzoru (9) i przyjętych wartości obliczono też indukcję pola magnetycznego B_1 dla punktów leżących na osi uzwojenia. Wyniki tych obliczeń przedstawiono na rys. 4.

Rys.4. Indukcja pola magnetycznego B_1 jako funkcja względnej odległości od środka magnesu x/l

Moc zasilania

Ponieważ magnes znajduje w stanie rezystywnym, to energia płynącego w nim prądu jest rozpraszana w formie ciepła. Obliczona zostanie teraz moc strat cieplnych P. Strata mocy dP w elemencie objętości dV wynosi

(11)
$$dP = \rho_0 \lambda j^2(r) dV$$

Zgodnie z rys. 5 dV wyraża się wzorem

$$dV = r^2 d\varphi dr dh$$

Do wzoru (11) podstawia się wzór (4) i oblicza całkę

(13)
$$P = \rho_0 j_0^2 \lambda r_1^2 \int_{r=r_1}^{r+r_2} \int_{h=0}^{h=l} \int_{\varphi=0}^{\varphi=2\pi} \frac{drdhd\varphi}{r}$$

Rys.5. Schemat do obliczania mocy strat cieplnych i natężenia prądu w magnesie Bittera; j(r) – gęstość prądu, dV – element objętości, r, h – odległości elementu objętości odpowiednio od: osi magnesu i jego końca, $d\varphi$ – element kąta azymutalnego, r_1 , r_2 , l mają takie samo znaczenie jak na rys. 2

W wyniku tego mocy strat cieplnych P wyraża się wzorem

(14)
$$P = 2\pi l r_1^2 j_0^2 \rho_0 \lambda \ln \alpha$$

Po podstawieniu wcześniej przyjętych wartości do wzoru (14) otrzymuje się P = 43,6 W.

Szybkości chłodzenia

(

W celu zachowania stałej temperatury uzwojenia konieczne jest jego chłodzenie ciekłym helem. Ilość ciepła odbieranego przez hel w czasie 1 s, czyli szybkość chłodzenia *Q*, powinna być równa mocy strat cieplnych *P*. Odbieranie ciepła następuje w wyniku parowania ciekłego helu, dlatego zgodnie z zasadą bilansu cieplnego można napisać równanie

$$Q = m_h c_p = V_h \rho_h c_p = P$$

w którym m_h , oznacza masę helu parującego w czasie 1 s, zaś c_p – ciepło parowania helu (c_p = 2,09·10⁴ J/kg) [26]. Ponadto V_h oznacza objętość ciekłego helu, odpowiadającą masie m_h , natomiast ρ_h = 145 kg/m³ jest jego gęstością. Ze wzoru (15) wyznacza się

(16)
$$V_h = \frac{P}{\rho_h c_p}$$

Po podstawieniu odpowiednich wartości to wzoru (16) otrzymuje się V_h = 14,4·10⁻⁶ m³/s, co odpowiada natężeniu przepływu 51,9 l/h.

Wytrzymałość mechaniczna

Ważnym wielkością, którą należy obliczyć są naprężenia w uzwojeniu. Elementy uzwojenia przewodzące prąd znajdują się w polu magnetycznym, wytwarzanym przez to uzwojenie. Z tego powodu na te elementy działają siły Lorenza i uzwojenie podlega działaniu sił rozciągających w kierunku radialnym oraz sił ciskających w kierunku osiowym. Decydujące znaczenie mają naprężenia rozciągające σ_r , które najczęściej powodują rozerwanie magnesów. Naprężenia te oblicza się ze wzoru

(17)
$$\sigma_r = \frac{B^2}{2\mu_0}$$

w którym *B* oznacza indukcję pola magnetycznego. Dla obliczonej wcześniej maksymalnej indukcji *B* = 12,3 T ze wzoru (17) otrzymuje się $\sigma_r = 5,99 \cdot 10^7$ N/m². Wartość ta jest znacznie mniejsza, niż wytrzymałość wolframu na rozerwanie σ_{rm} wynosząca 1,72 $\cdot 10^9$ N/m² [27].

Dyskusja wyników

Najwazniejszą zaletą opisanego magnesu Bittera jest bardzo mała moc zasilania, wynosząca 43,6 W. Wynika to z niezwykle małej rezystywności wolframu chłodzonego ciekłym helem o temperaturze 4,2 K. Dla porównania obliczona zostanie moc zasilania konwencjonalnego magnesu Bittera chłodzonego wodą. Będzie to magnes o tych samych wymiarach i zasilany prądem o tym samym natężeniu. Oznacza, że magnes ten wytwarza pole magnetyczne o tej samej wartości indukcji. Do jego wykonania zostanie użyta miedź i uzwojenie będzie pracowało w temperaturze $t_2 = 60^{\circ}$ C. W tych warunkach rezystywność miedzi ρ_m = 1,83·10⁻⁸ Ωm [27]. Ze wzoru (14) otrzymuje się moc zasilania tego magnesu P_m = 2,99 MW. Jest to moc strat cieplnych, którą należy odprowadzić przy użyciu wody przepływającej przez magnes. Niech woda chłodząca ten magnes ma temperaturę początkową t_1 = 20°C. Odprowadzanie ciepła zachodzi w tym przypadku w wyniku ogrzewania wody od temperatury t_1 do t_2 . Stosując zasadę bilansu cieplnego oblicza się objętość wody V_w , przepływającej przez magnes w czasie 1 s. Zgodnie z tą zasadą można napisać równanie

(18)
$$P_m = \rho_w V_w c_w (t_2 - t_1)$$

w którym ρ_w , c_w oznaczają odpowiednio: gęstość wody i jej ciepło właściwe. Ze wzoru (18) wyznacza się

(19)
$$V_{w} = \frac{P_{m}}{\rho_{w}c_{w}(t_{2}-t_{1})}$$

Podstawiając do wzoru (19) $\rho_w = 998 \text{ kg/m}^3$, $c_w = 4,18 \text{ kJ/(kg}^{\circ}\text{C})$ i wcześniej otrzymane wartości otrzymuje się $V_w = 17,9 \text{ dm}^3$ /s. Tej wartości odpowiada natężenie przepływu wody wynoszące 41,9 m³/h. Z przeprowadzonego porównania wynika wniosek, że zastosowanie do budowy magnesu Bittera wolframu chłodzonego ciekłym helem pozwala wielokrotnie zmniejszyć moc zasilania. W rozpatrywanym przykładzie jest to 6,86·10⁴ razy. Dzięki temu uzyskuje się ewidentną oszczędność energii elektrycznej i kosztów eksploatacji magnesu.

Zachowanie stałej temperatury uzwojenia wymaga dopływu dostatecznej ilości ciekłego helu, wynoszącej 51,9 l/h. Wydajność obecnie budowanych skraplarek helu wynosi od kilku do kilkudziesięciu l/h a ich moc zasilania ok. 40 kW [28]. Duże stacje do skraplania helu mają wydajność ok. 250 l/h. Dlatego ciągłe zaopatrzenie rozpatrywanego magnesu w ciekły hel leży granicach obecnych możliwości technicznych. Natomiast całkowita moc instalacji zasilania takiego magnesu byłaby w granicach kilkuset kW.

Istotna zaleta wolframu jest jego wysoka wytrzymałość na rozrywanie, wynosząca 1,72·10⁹ N/m² w temperaturze 20°C. W temperaturze ciekłego helu wytrzymałość ta jest prawdopodobnie jeszcze wyższa. Dla porównania, wytrzymałość miedzi na rozrywanie w temperaturze 20°C wynosi 0,20 10⁹ N/m². Z tego powodu uzwojenia magnesów Bittera wykonane z miedzi wymagają specjalnego wzmocnienia, np. przez ściskanie ich śrubami o dużej wytrzymałości. Ze wzoru (17) wynika, że przekroczenie wytrzymałości na rozrywanie w magnesie wykonanym z wolframu nastąpiłoby dla indukcji magnetycznej 65,7 T. Z tego powodu wolfram chłodzony ciekłym helem jest bardziej przydatny do budowy magnesów wytwarzających silne pola magnetyczne, niż miedź. Najsilniejsze. konwencjonalne magnesy Bittera, które obecnie działają, są złożone z kilku uzwojeń umieszczonych jedno wewnątrz drugiego i wytwarzają pola magnetyczne o indukcji ok. 30 T. W rozważanym przykładzie przyjęto dość dużą średnicę obszaru, w którym wytwarzane jest pole magnetyczne ($2r_1$ = 40 mm). W magnesach Bittera wytwarzających najsilniejsze pola średnica ta jest mniejsza i wynosi ok. 20 mm. Ze wzorów (10) i (14) wynika, że zmniejszając r_1 można spowodować wzrost indukcji pola i zmniejszenie mocy zasilania. W ten sposób można uzyskać lepsze chłodzenie i niższe koszty eksploatacji magnesu.

Autorzy: dr hab. Stanisław Bednarek, dr Julian Płoszajski, Uniwersytet Łódzki, Wydział Fizyki i Informatyki Stosowanej, ul. Pomorska 149/153, 90-236 Łódź. E-mail: stanisław.bednarek@uni.lodz.pl, julian-p@wp.pl.

LITERATURA

- Herlach J.F., Miura N. (Editors), High Magnetic Fields Science and Technology, Vol. 2, Theory and Experiments I, World Scientific (2003)
- [2] Wu Chao A., Mess K.H., Tinger M., Zimermann F., Handbook of Accelerators Physics and Engineering, World Scientifics (2013)
- [3] Truck B., Tore supra: A tokamak with superconducting toroidal field coils, *IEEE Trans. Mag.*, 25 (1989) 1473-1480

- [4] N'gotta P., Le Beck G, Chavanne J., Hybryd high gradient permanent magnet quadrupole, *Phys. Rev. Accel. Beams*, 19 (2016) 122-124
- [5] Elder F.R., Gurewitsch A.M., Langmuir R.V., Pollock H.C., Radiation from electrons in a synchrotron, *Phys. Rev.*, 71, (1947), 11, 829-830
- [6] Motokawa M., Watanabe K., Awaji S., High magnetic field research in Tohoku University, *Curr. Appl. Phys.*, 3 (2003), 367-376
- [7] Lubkin G.B., Florida dedicated National High Magnetic Field Laboratory, *Phys. Today*, 12 (1994), 21-23
- [8] Xia J.C., Vicente C., Aoms E.D., Sullivan N.S., The National High Magnetic Field Laboratory Ultra-High B/T Facility, *Phys.* B, 346-347 (2004), 649-653
- [9] Trojnar K., Kopetzki N., High Field Magnets at the International Laboratory Wrocław, *Phys. B*, 155 (1989), 85-86
- [10] Herlach J.F., Miura N., (Editors), High Magnetic Fields Science and Technology, Vol. 1, Magnet Technology and Experimental Technique, World Scientific, (2003)
- [11] Bitter F., The design of powerful electromagnet, Part. II. The magnetizing coil, *Rev. Sci. Instr.*, 7 (1936), 482-489
- [12] Soghomonian V., Sabo M., Powell A., Murphy P., Rosanske R., Cross T.A., Schneider-Muntau H.J., Indentofication and minimization of sources of temporal instabilities in high field (>23 T) resistive magnets, *Rev. Sci. Instr.*, 71 (2000), 7, 2882-2886
- [13] Cyrot M., Pavuna D., Introduction to Superconductivity and High T_c Materials, World Scientific Publishing Co. (1992)
 [14] Ding H., Yuan Y., Xu Y., Jiang C., Li L., Duan X., Pan, J. Hu
- [14] Ding H., Yuan Y., Xu Y., Jiang C., Li L., Duan X., Pan, J. Hu J., Testing and Commissioning of a 135 MW Pulsed Power Supply at the Wuhan National High Magnetic Field Center, *IEEE Trans. Appl. Supercon.*, 24 (2014), 3, doi:10.1109/TASC.2013.2292305.
- [15] Knoepfel H., Pulsed High Magnetic Fields, Physical Effects and Generation Methods Concerning Pulsed Fields up to the Megaersted Level, Nord-Holland Publishing Company, (1970)
- [16] Kane B.E., Dzurak A.S., Facer G.R., Clark R.G., Starrett R.P., Skougarevsky A., Lumpkin N.E., Measurement instrumentation for electrical transport experiments in extreme pulsed magnetic fields generated by flux compression, *Rev. Sci. Instr.*, 69 (1997), 10, 3843-3860
- [17] Nojiri H., Takamasu T., Todo S., Uchida K., Haryama T., Katori H.A., Goto T., Miura N., Genertion of 500 T fields by electromagnetic flux compression and their application to cyclotron resonance, *Phys. B* 201 (1994), 579-583
- [18] Motokawa M., Nojiri H., Tokunaga Y., An idea for the easy construction of a high field magnet, *Phys. B*, 155 (1989), 96-99
- [19] Mackay K., Bonfim M., Givord D., Fontaine A., 50 T pulsed magnetic fields in microcoil, *J. App. Phys.*, 87, (2000), 4, 1996-2002
- [20] Peng T., Jiang F., Sun Q.Q., Pan Y., Herlach F., Li L., Concept Design of 100 T Pulsed Magnet at the Wuhan National High Magnetic Field Center, *IEEE Trans. Appl. Supercon.*, 26, (2014), nr.4, doi: 10.1109/TASC.2015.2523366
- [21] Back C.H., Siegmann H.C., Ultrashort magnetic field pulses and elementary process of magnetization reversal, J. Magn. Magn. Mater., 200 (1999), 774-785
- [22] Siegmann H.C., Magnetism in the pirosecond time scale with electron accelerators, *Europhys. News*, 31 (2000), nr. 6, 24-25
- [23] Bjørk R., Bahl C.R.H., Insinga A.R., Topology optimized permanent magnet system, J. Magn. Magn. Mater., 437 (2017) 78-85
- [24] Desai E., Electrical resistivity of tungsten, J. Phys. Chem. Ref. Data, 13 (1984), 4, 1091-1096
- [25] Haynes W.M., (Editor in Chief), CRC Handbook of Chemistry and Physics, CRC Press Taylor and Francis Group (2017)
- [26] Mendelson K., Cryophysics, Wiley and Sons, Inc., (1960)
- [27] Madelung O., Martienssen W., (Editors), Landolt-Börnstein: Numerical Data and Functional Relationships in Science and Technology, Springer-Verlag (1989)
- [28] Daunt J.G., Johnston H.L., A Large Helium Liquefier, Rev. Sci. Instr., 122 (2004), 20, doi.org/10.1063/1.1741462