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Abstract. The problem of image reconstruction in electrical impedance tomography (EIT) consists in both performing  measurements  using a set of 
sensors and  creating of reconstruction based on these measurements. The image reconstruction requires accurate modeling of area, which 
presents field of view. To determine the inclusion in analyzed area the logistic regression has been applied. Additionally to select the predictors in 
logistic regression the elasticnet method has been used. 
 
Streszczenie.  Problem rekonstrukcji obrazu w elektrycznej tomografii impedancyjnej (EIT) polega zarówno na wykonywaniu pomiarów przy użyciu 
zestawu czujników, jak i na tworzeniu rekonstrukcji na podstawie tych pomiarów. Rekonstrukcja obrazu wymaga dokładnego modelowania obszaru, 
który przedstawia pole widzenia. Do określenia wtrąceń w analizowanym obszarze zastosowano regresję logistyczną. Dodatkowo do wyboru 
predyktorów w regresji logistycznej zastosowano metodę elasticnet. Problem rekonstrukcji obrazu w elektrycznej tomografii impedancyjnej 
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Introduction 
 Electrical Impedance Tomography is a nondestructive 
method to create an image reconstructions in different 
application areas (e.g. biomedical diagnosis [14], industrial 
imaging [4], [6], [7], [12], [17], [19], geological imaging  [11] 
,[31]). Many researchers have devoted our investigations to 
improve imaging efficacy and accuracy. As a results of 
exploration of researchers many methods have been 
created, which were directly applied into Electrical 
Impedance Tomography (EIT), Electrical Capacitance 
Tomography (ECT), Magnetic Resonance Imaging (MR), 
Ultrasound Tomography (UST)(see e.g. [1], [2], [6], [11], 
[13], [16], [22]). Main aim of tomography depends on image 
reconstruction, which directly connected with inverse 
problem solution. Some signals obtained from electrodes, 
transducers are mutually correlated (collinearity problem), 
see e.g. [3], [5], [8], [11]. In this case the application Gauss-
Markov theorem to determine the unknown parameters in 
linear models (e.g. between conductivity and measured 
voltages on the electrodes)  does not give satisfactory 
effects.  To overcome this problem the researchers apply 
usually singular value decomposition [28], LARS [8], [28], 
[29], regularization methods (such as Tikhonov 
regularization, total variation, least angle regression,  
sparse regularization, see e.g. [23],  [24], [25], [26], [29]) or 
neural network [5], [10], [20]. 
 Our target of work does not depend on improving of 
image accuracy but only quickly searching the areas in 
imaging domain which can contain the inclusions with large 
probability. Obtained results can be used as a prior 
resolution to image reconstruction. In paper a logistic 
regression was proposed to solve the inverse problem in 
electrical impedance tomography. The areas with large 
probability of inclusion are determined based on 
measurements obtained from transducers located on the 
boundary of  imaging domain. By setting the cut off 
probability level we can made the classifier, which  is helpful 
to separate background and inclusion. Additionally by 
changing the required probability level we can improve 
imaging accuracy. To overcome the measurements 
collinearity problem we apply the regularization technique 
based on elastic net as a combination of Tikhonov 
regularization and Least Absolute Shrinkage and Selection 
Operator (LASSO) [24], [25, [28]. To test the performance 
of proposed method the numerical and experimental results 
are conducted. 

Problem formulation 
Main task of electrical impedance tomography consists 

in reconstruction of imaging domain. In many cases we 
must determine the areas which contain some inclusions in 
imaging domain. To determine the inclusions first we model 
a specially developed mesh which corresponds to imaging 
domain. From above the imaging domain is divided into ݇ 
finite elements. Thus each inclusion we may designate as a 
set of finite elements. To answer the question does the 
finite element contain an inclusion it is necessary to define 
classifier for each finite element. The classifier is a function 
which has a realization  in binary set. The realizations of 
this function correspond to inclusion  existence (or not).  
To create a classifier we employ logistic regression. In this 
way first we calculate the probability that response variable 
belongs to appropriate category by observing the signal 
ݔ ∈ ܴ obtained from electrodes (sensors). Therefore 
instead of determining inclusion or not for each finite 
element we estimate the probabilities of inclusion. On the 
other words application of logistic regression allows us to 
determine the inclusion resolution of imaging domain. Next 
by using a classifier ݂: ܴ → ሼ0,1ሽ (which would allow to 
classify the existence of object into categories ݕ ൌ 1	or 
ݕ ൌ 0) we build a reconstruction of imaging domain.  
 Let ሺߗ, ,ܨ ܲሻ be a probability space. On this space we 
define a random variable ܻ with binomial distribution, i.e. 
ܻ: ߗ → ሼ0,1ሽ. Logistic regression (see e.g. [27], [28], [29]) 
describes probability of realization of dependent variable ܻ 
based on observation of input variables ܺ. For convenience 
ܲሺܻ ൌ 1|ܺሻ denotes success probability and ܲሺܻ ൌ 0|ܺሻ 
defeat (unsuccess) probability. In literature the ratio 
success probability to defeat probability 

ሺܺሻ߆   (1) ൌ
ሺୀଵ|ሻ

ሺୀ|ሻ
ൌ

ሺୀଵ|ሻ

ଵିሺୀଵ|ሻ
  

is called the odds. The aim of logistic regression consist in 
determining the probability of success ܲሺܻ ൌ 1|ܺሻ based on 
observation ܺ. Because the probability of success 
ܲሺܻ ൌ 1|ܺሻ ∈ ሺ0,1ሻ, therefore from formula (1) it follows, that 
the odds ߆ሺܺሻ ∈ ሺ0,∞ሻ and ݈݊൫߆ሺܺሻ൯ ∈ ሺെ∞,∞ሻ. The 
logarithm of odds is called log-odds or logit. 

Application of logistic regression in EIT allows us 
determine the resolution of inclusion probabilities based on 
measurements obtained from sensors [7]. Accordingly to 
sequence of probabilities we may create the sequence due 
to classification level ݏ ∈ ሾ0,1ሿ compounded from elements 
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from a set ሼ0,1ሽ which correspond defeat and success 
accordingly.  

 

Logistic regression 
 For any finite element we consider the training set. This 
data set contains both realizations of input variables 
(measurements from sensors) and realizations of output 
variable. The data set is designated as ܦ ൌ ሼሺݔ∙,  ,ሻሽଵ⩽⩽ݕ
where ሼݔ∙ሽଵ⩽⩽denotes a series of input variables, 
ሼݕሽଵ⩽⩽ is a series of response variable,  
∙ݔ ∈ ܴ , ݕ ∈ ሼ0,1ሽ for 1 ⩽ ݅ ⩽ ݊ and ݉ denotes number of 
measurements obtained from transducers (sensors). For 
݅ െth case if the finite element contains inclusion, then we 
take ݕ ൌ 1 otherwise we put	ݕ ൌ 0. The training set can be 
presented as ܦ ൌ ሼܻ, ܺሽ, where 

 ܻ ൌ ൦

ଵݕ
ଶݕ
⋮
ݕ

൪,  ܺ ൌ ൦

ଵଵݔ ଵଶݔ ⋯ ଵݔ
ଶଵݔ ଶଶݔ ⋯ ଶݔ
⋮ ⋮ ⋮ ⋮
ଵݔ ଶݔ ⋯ ݔ

൪ ൌ ൦

∙ଵݔ
∙ଶݔ
⋮
∙ݔ

൪. 

In logistic regression (e.g. [27], [28], [29]) we analyze the 
linear dependencies between logit and input variables  

ሺܺሻ߆݈݊    (2) ൌ ݈݊ ቀ
ሺఉ,ሻ

ଵିሺఉ,ሻ
ቁ ൌ   ,ߚܺ

where ߚ ൌ ሺߚଵ, … , ሻߚ ∈ ܴ and ሺߚ, ܺሻ ൌ ܲሺܻ ൌ 1|ܺሻ. If  
linear equation (2) contains an intercept, then in matrix ܺ 
the column that corresponds to intercept contains ones.  
From (2) we obtain  

,ߚሺ   (3) ܺሻ ൌ
ഁ

ଵାഁ
.   

The maximum likelihood method is applied to estimate the 
unknown parameters ߚ	in model (3). First we define the 
likelihood function as  

,ߚሺܮ  (4) ܻ, ܺሻ ൌ ∏ 
ୀଵ ሺߚ, ∙ሻ௬൫1ݔ െ ,ߚሺ ∙ሻ൯ݔ

ଵି௬. 

Solution of  the task  
ݔܽ݉   (5)

ఉ
,ߚሺܮ	 ܻ, ܺሻ     

gives the estimators of unknown parameters ߚ. Usually 
instead resolving the problem (5) we solve the auxiliary task  

ݔܽ݉   (6)
ఉ

	݈ሺߚሻ,    

where the objective function is defined as logarithm of 
likelihood function ݈ሺߚሻ ൌ ݈݊൫ܮሺߚ, ܻ, ܺሻ൯ and equal  

(7)  ݈ሺߚሻ ൌ ∑ ቀݕݔ∙ߚ െ ݈݊൫1  ݁௫∙ఉ൯ቁ
ୀଵ .  

First and second partial derivatives of objective function (7) 
are given by formulas 

߲݈ሺߚሻ

ߚ߲
ൌ ்ܺ ൦

ଵݕ െ ,ߚሺ ଵ∙ሻݔ
ଶݕ െ ,ߚሺ ଶ∙ሻݔ

⋮
ݕ െ ,ߚሺ ∙ሻݔ

൪ 

and 
߲ଶ݈ሺߚሻ

்ߚ߲ߚ߲
ൌ െ்ܼܺሺߚሻܺ 

accordingly, where diagonal matrix 
   ܼሺߚሻ ൌ ݀݅ܽ݃൫݄ሺߚ, ,ଵ∙ሻݔ … , ݄ሺߚ,  ∙ሻ൯ݔ
and 

݄ሺߚ, ∙ሻݔ ൌ ,ߚሺ ∙ሻ൫1ݔ െ ,ߚሺ  ∙ሻ൯ݔ
for 1 ⩽ ݅ ⩽ ݊. We see that the matrix of second partial 
derivatives is negative defined. 
 To determine the unknown parameters ߚ the Newton-
Raphson algorithm was applied. Application of this 
algorithm follows that the unknown parameters ߚ are 
estimated iteratively. In the step ݆  1 the  estimators are 
determined by formula 

ାଵߚ   ൌ ߚ  ቀ
డమ൫ఉೕ൯

డఉడఉ
ቁ
ିଵ

డ൫ఉೕ൯

డఉ
. 

Elasticnet 
In EIT we have a multicollinearity problem. The 

measurements obtained from some sensors are strongly 
correlated. When the independent variables (predictors) in 
system (2) are correlated then the direct solution of task (6) 
(direct application Gauss-Markov theorem) does not give 
the expected effect. Additionally the forecasts based on this 
model are unstable. Possible solution of presented problem 
depends on selection appropriate predictors(input variables) 
that should be included to regression model (2). On the one 
hand these predictors should influence on the value of 
response variable, on the other hand they should not create 
multicollinearity.  

In literature there are many techniques (e.g. singular 
value decomposition, regularization, least angle regression) 
to solve the optimization problem (6) for the cases when the 
input variables are correlated, see e.g. [24],[25],[26].One of 
the possible ways to reduce multicollinearity dependences 
between predictors depends on imposing a penalty on large 
values of estimators and including this penalty into objective 
function (see e.g. [25], [27], [28]). When predictors are 
correlated to determine the unknown parameters of logistic 
regression (2) we solve the task 

ݔܽ݉ (8)
ఉ

∑ ቀݕݔሺሻߚ െ ݈݊൫1  ݁௫ሺሻఉ൯ቁ െ ߣ ఈܲሺߚሻ

ୀଵ   

where ߣ  0 and value ఈܲሺߚሻ denotes the penalty. Usually 
penalty is defined as  ܮଶ norm and called ridge regression 
(Tikhonov regularization) or ܮଵ norm and called Least 
Absolute Shrinkage and Selection Operator (LASSO). The 
elasticnet is a connection of ridge regression  and LASSO. 
Thus for 0 ⩽ ߙ ⩽ 1 penalty ఈܲሺߚሻ is defined as linear 
combination of vector norm of estimators  ߚ in spaces ܮଵ, ܮଶ 
and given by formula 

ఈܲሺߚሻ ൌ ሺ1 െ ሻߙ
1
2
మ‖ߚ‖   భ‖ߚ‖ߙ

This technique implies a shrinkage of estimators of 
unknown parameters. Application the elasticnet method to 
solve the inverse problem in electrical impedance 
tomography allows to receive more accurate and stable 
reconstruction results see e.g. [5], [6], [11]. 
 
Numerical examples 

The research presented in this section applies a method 
based on many separately trained logistic regression 
subsystems. Each subsystem corresponds to appropriate 
finite element in imaging domain. The test object was a tank 
filled with liquid (tap water) with 320 mm diameter. For 
numerical experiments a special mesh of the imaging 
domain has been developed that contains 2883 finite 
elements. The measuring system consisted of 16 
electrodes, which  were installed around the walls of the 
tank.  
 

 
Fig.1. An example of simulation of imaging domain with a graph 
showing the voltage measurements. 
 

The data was obtained through EIT. The measuring 
input vector (measurements obtained from electrodes) 
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consists of 96 input variables (see Fig. 1). Each value of 
input vector reflects the voltage measured between 
appropriate pair of electrodes.  

To generate an appropriate training data set, a physical 
model of an industrial tank was built. Using the finite 
element method, the tank cross-section mesh together with 
the 16 measuring electrodes system was designed using 
the MATLAB/EIDORS toolbox. Algorithms generating 
learning instances were also developed. Each case 
consists of a measurement vector and image generated on 
a two-dimensional mesh of pixels. It was generated 3281 
cases, which next were used to estimate logistic regression 
models (subsystems) for each finite element from entire 
system (entire systems consists of 2883 subsystems). Each 
of the 2883 subsystems has realizations (outputs) only in 
binary set, which is then displayed as the pixel of the output  
image. Since among 96 measurements (input variables) 
obtained from electrodes significant number of  these inputs 
are mutually correlated. To receive stable reconstructions it 
was take into account penalty ఈܲሺߚሻ during estimation 
unknown parameters in logistic regression (2). From above 
separately for each pixel has been solved the task (8). As a 
result only necessary measurements have been used into 
account during reconstruction. The selection of input 
variables has been reached by application elastic net 
method. 
 Below it will be presented the reconstruction which 
required application of logistic regression. Based on 
measures ݔ ∈ ܴ obtained from sensors for j-th finite 
element, 1 ⩽ ݆ ⩽ 2883, we calculate the probability of 
inclusion as follows 

ఫ̂ݕ    (9) ൌ
ೣ್ണ̂

ଵାೣ್ണ̂
    

where ߚఫ̂ ∈ ܴ denotes the estimator of unknown 
parameters ߚ for logistic regression (2). This procedure we 
repeat for each finite element. As a result we obtain a 
sequence ൛ݕఫ̂ൟଵஸஸଶ଼଼ଷ, where ݕఫ̂ ∈ ሾ0,1ሿ for 1 ⩽ ݆ ⩽ 2883  

denotes an probability inclusion for ݆ െth finite element in 
imaging domain.   
 Thus inclusion detection in imaging domain consists in 
determining the finite elements, which contain inclusions, 
and presenting the image reconstruction. In consequence 
the task is to find a such classifier, which based on a 
sequence of probabilities shows an areas of inclusion. 
Accordingly  for a sequence of inclusion probabilities we 
must define the sequence compounded from elements such 
as success and unsuccess due to the classification  level 
ݏ ∈ ሾ0,1ሿ. The success corresponds to existence of inclusion 
for finite element, otherwise finite element does not contain 
the inclusion. The sequence ݒሺ̂ݕ, ݈ሻ ൌ ൛ݒሺ݈ሻൟଵ⩽⩽, where  

ሺ݈ሻݒ    ൌ ቊ
0, ఫ̂ݕ	ݎ݂ ൏ ݈,
1, ఫ̂ݕ	ݎ݂ ⩾ ݈  

we call a reconstruction of imaging domain. 
 
 Different cases of positioning objects in the imaging 
domain were investigated. Additionally the cut-off level was 
assumed to be 0.5. Fig. 2 presents the patterns and real 
reconstructions based on logistic regression with application 
an elasticnet method. 
 The quality (efficacy and accuracy) of reconstruction has 
been assessed by calculation two indices. To compare the 
pattern and reconstruction it has been utilized the basic 
property of a scalar product (Cauchy – Bunyakovsky – 
Schwarz inequality). Let  ݕ ൌ ൛ݕൟଵ⩽⩽	be a pattern 

corresponding to measures ݔ ∈ ܴ and ݒሺ̂ݕ,   ሻݏ

reconstruction which corresponds to this same measures. 
We define the Compatibility Ratio as follows 

ሺ݈ሻܴܥ  (10) ൌ
௩ೝሺ௬̂,ሻ,௬ۧۦ

ඥ‖௩ೝሺ௬̂,ሻ‖‖௬‖
 

 

Fig 2. Patterns and reconstructions for the system with 16 
measured sensors. 
 

When vectors ݒሺ̂ݕ, ݈ሻ and ݕ are collinear  
,ݕሺ̂ݒ) ݈ሻ ൌ ݎ where ,ݕݎ ∈ ܴ ∖ ሼ0ሽ), then ܴܥሺ݈ሻ ൌ 1. Another 
index helpful in measuring accuracy is Relative Error of 
reconstruction 

ሻݏሺܧܴ  (11) ൌ
‖௩ೝሺ௬̂,ሻି௬‖

‖௬‖
  

Because the elements of sequences ݒሺ̂ݕ, ݈ሻ and ݕ 
come from binary set, then Relative Error shows which part 
of imaging domain relative to inclusion is not recognized. 

Table 1 presents the values of compatibility ratio and 
values of relative error between patterns and 
reconstructions for samples presented in Fig. 2. From 
above we see, that areas of inclusion near boundary of 
imaging domain e.g. sample 1,3,4, Fig. 2 are better 
recognized than inclusion in centre of imaging domain. 
Reconstructions were made on PC, Intel Core i5 4th 
generation. Time of reconstruction did not exceed 10ିଷ sec. 
 
Table 1. The parameters of the sensor 

Case 
Reconstruction 

Time (sec) CR RE 
1 0.000257 0.9844 0.1777 
2 0.000263 0.9749 0.2268 
3 0.000264 0.9834 0.1835 
4 0.000271 0.9932 0.1163 

 
Summary 

The paper presents a method of application of logistic 
regression to solve the inverse problem in Electrical 
Impedance Tomography. The logistic regression has  both 
advantages and disadvantages. Application of presented 
method allows to calculate the probability of inclusions in 
imaging domain. Additionally applying a classifier we can 
determine directly the areas with large probability of 
inclusion. Presented method gives a fast reconstruction and 
can be successfully used in industry. The study gives 
promising results – accuracy and sensitivity exceed 0.95, 
furthermore positive predicted value (called precision and 
characterizes a purity of performed classifier) exceed 0.95 
too. Reconstruction results depend on the training set. This 
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is only inconvenience (disadvantage) of presented 
methodology. 
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