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Streszczenie. W artykule przedstawiono rozwiązanie problemu optymalizacji wielokryterialnej poprzez redukcję wymiarów w przestrzeni kryteriów. 
Rozważono właściwości zbioru Pareto w zadaniu projektowania generatora z magnesami trwałymi. Zaprezentowano i porównano aproksymacje 
frontu Pareto przy optymalizacji z ograniczeniami przy redukcji z pięciu dwóch kryteriów. 
 
Abstract. This paper addresses the problem of dimensionality reduction while preserving the characteristics of the Pareto set approximation in 
multiobjective optimization. The real-life engineering design problem for permanent magnet generator is considered. The Pareto front 
approximations with constraints, ranging from the five objectives to the set of two, are presented and compared. (Redukcja wymiarów przestrzeni 
kryteriów w polioptymalizacji generatora z magnesami trwałymi).  
 
Słowa kluczowe: optymalizacja wielokryterialna z ograniczeniami, maszyna z magnesami trwałymi, front Pareto, redukcja wymiarów. 
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Introduction. 

The field of multiobjective evolutionary algorithms has 
been rapidly growing over the last decade [3]. Most 
publications deal with two- or three-objectives problems, 
except “test beds” that are capable of controlled simulation 
of the algorithms’ features. The main reason is that a high 
number of objectives causes additional challenges 
compared to low-dimensional problems. 

In single-objectives optimization designer obtains one 
optimal solution. For a nontrivial multi-objectives 
optimization problem, no single solution exists that 
simultaneously optimizes each objective. In that case, the 
objective functions are said to be conflicting, and there 
exists a possibly infinite number of Pareto optimal solutions 
[3]. Because such a set in multidimensional space cannot 
be ordered completely, one needs extra preference 
information coming from a designer, or generally speaking a 
Decision Maker (DM), to be able to select the most 
preferred solution 

The main problem is that an increase of dimensionality 
of the Pareto set causes an exponential increase of points 
necessary for its representation [4] and a resulting difficulty 
in visualizing results to the DM. Works addressing the 
problem of dimensionality reduction has been presented 
recently [4], [5], [6]. 

The problem of electric machine design is one of the 
most challenging in machine design, as it has space-
distributed nonlinearities and numerous constraints. These 
facts justify great interest in application of genetic 
algorithms. The exhaustive literature summary on this topic 
can be found in [8]. In recent review [1] it is shown Pareto-
based multiobjective approach is still not used very often. 

 
Multi-criteria dimensionality reduction 

Using scalar objectives in complex multiobjective 
optimization problems with constraints leads to solutions 
relying solely on the DM’s preferences This may be 
considered as pre-optimization. The disadvantage of this 
approach is the inability to assess how preferences affect 
the final result. 

When specifying preferences in post-optimization, one 
has to examine the set of Pareto optimal solutions. Then 
the DM chooses preferred  solution based on the trade-offs 
observed among the set. When solving the problem with too 
many objective functions there are difficulties with the 
description (preferably visualization) of the set of Pareto 
optimal solutions. 

The main goal of this paper is to find out whether it is 
possible to omit some of objective functions while 
preserving the solution characteristics. Also under which 
conditions such an objective reduction is feasible, and how 
such a minimum set of objectives can be computed. 

In the proposed procedure the first step is to find a 'non-
essential' objective, whose dropping does not affect the set 
of efficient solutions. Principal Component Analysis, 
henceforth referred to as PCA, is the method for reducing 
the number of objectives [4]. It aims to keep those 
objectives that can explain most of the variance in the 
objective space. 

The next step is to reduce the dimensionality of the 
problem. One possibility is to remove one of the objectives. 
In the case that more than one objective is identified as 
redundant. The proposed procedure leads to the 
replacement of a non-redundant objective with a new one 
which combines features of all the removed ones, tailored 
to the DM preferences (as discussed in [3], [7]). 

In this paper the dimensionality reduction is presented. 
To prove its quality the relationships between selected 
design variables computed from the Pareto-optimal sets 
approximation before and after objective replacement is 
analyzed. It is shown that they possess the same 
structures, which justifies dimensionality reduction. 

 

Application of reduction of criteria 
Modern design of electrical machines is carried out by 

means of numerical approach, usually using the finite 
element technique. Because of the complexity of electric 
machines, the model derivation is included. 

The key factor is to prepare the parameterization 
algorithms to enable analysis. Due to the fact that 3D 
models require vast amount of calculations this paper 
focuses on the novel 2D model. In this case the 
fundamental challenge is modelling of slot skewing, which is 
the main factor pushing down the torque ripples. The 
application of low-pass filtering (in space) provides us with 
the tool for fast computation of that effect. The presented 
model is derived using this approach. 

This paper has the following outline. Section two 
provides basic concepts of the dimensionality reduction. 
Section three introduces the permanent magnet generator 
design problem followed by a detailed description of the 
novel model. 

After performing a Pareto optimization in full five- 
dimensional objective space, the problem of dimensionality 
reduction is addressed in Section four. 
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Dimensionality Reduction in Multiobjective Optimiza-
tion. 

The PCA is a technique for simplifying data sets for 
analysis by reducing their dimensionality. In mathematical 
terms, M potentially highly correlated variables are 
transformed into a set of L < M weakly correlated variables. 
These new variables are a linear combination of the original 
variables and can be used to express the data in a reduced 
form while retaining those characteristics of the data set 
that contribute most to its variance. It is achieved by 
keeping lower-order principal components and ignoring 
higher-order ones. Such low-order components often 
contain the "most important" aspects of the data. 

Two types of methods are used for performing PCA. 
The first type is based directly on data analysis (e.g. neural 
networks with Hebbian learning). In this paper the 
covariance method is used. The principal components are 
computed using a standard eigenvalue-eigenvector 
approach available in scientific software MATLAB [9]. 

The data set of N observations (solutions) is organized 
in a data matrix. It consists of N vectors each containing 
values of M criteria functions per column. 

The first step is to standardize the data by storing mean-
subtracted data in the M x N matrix X. Next an M x M 
empirical covariance matrix is calculated from the outer 
product of a matrix X with itself. 

(1)
     

    TT

1

1
EE BBBBBBC 




N . 
where B is the matrix whose elements are deviations from 
the mean of each row of the data matrix X, E is the 
expected value operator,  - the outer product, (.)T - the 
transpose operator. 

In the next step the M x M diagonal matrix D consisting 
of the set of all eigenvalues along the principal diagonal and 
the M x M matrix V consisting of the set of all eigenvectors 
(one eigenvector per column) of the covariance matrix C; 
they are computed from the equation 

(2)    CV = VD . 

The columns of the matrix V and eigenvalues from the 
matrix D are sorted in order of decreasing eigenvalue. 
The eigenvector corresponding to the largest eigenvalue 
is referred to as the first principal component, the one 
corresponding to the second largest eigenvalue is called 
the second principal component and so on. 

The eigenvalues represent the distribution of the data's 
energy among each of the eigenvectors, where the eigen-
vectors form a basis for the data. The elements of the 
principal component denote the relative contribution of each 
objective function towards this vector. A positive value 
signifies increase in objective value when moving along this 
principal component and a negative value denotes 
a corresponding decrease. By picking the most-negative 
and the most-positive elements from a principal component, 
one can identify two most conflicting objectives. 

In the objective dimensionality reduction problem, the 
PCA NSGA-II procedure outlined in [4] is used. 
 
Design Issues. 

The novel design algorithm of the permanent magnet 
machine is presented. Generally electric machine design 
aims to maximise their efficiency, minimise weight, power 
loss or any other technically justified criterion. The modern 
design is realised by means of numerical approach, usually 
through finite element technique. The key factor is to 
prepare the parameterisation algorithms to enable intro-
duction of geometrical details necessary for the correct 
element mesh of the machine. 

Description of the Design Problem. 
The permanent magnet machine model is based on 

several assumptions; the most important are: 
 the torque angle of the permanent magnet machine is 

close to /2, which is the generally accepted value, 
 the acceptable saturation level of the core and 

the temperature in the slots are calculated externally 
and denoted as the Bnt and Tapp values, 

 the flux density magnitudes in slots and yoke are equal, 
 the leakage flux is neglected. 
 
Permanent Magnet Generator Model. 

The equations used in the design are listed hereafter. 
Each of them introduces and defines graphically new 
variable. The basic dimensions of the machine are 
presented in figures 1-3. 
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Fig.1. Machine dimensions and graphic definition of optimisation 

problem argument D. 
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Fig. 2. Machine dimensions and graphic definition of argument h. 
 

Geometrical details of embedded magnets in the rotor 
are shown in figure 3. Dimensions of magnetic isthmus 
preventing the magnets from magnetic short-circuiting play 
an important role in the overall performance of the machine. 

dm 

π/2p 

δt 

δt 
δ 

Δm 

D 

Dm 

 
 

Fig.3. Machine geometry description. 
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Magnet width : 
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Effective magnetic pole pitch : 
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The distribution of the flux density (radial component) in 
the air gap is presented in figure. 4. 

The value of magnitude Bδ is obtained from the magne-
tisation curve of permanent magnets, but without taking into 
account the core saturation. 
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Fig.4. Radial magnetization in the slot 
 
Flux density of the permanent magnet : 

(5) 
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Yoke height (the saturation level of the core is set to Bnt: 
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Width of stator tooth and slot dimensions (see figure 2) : 
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Length of the core (the winding temperature is set to Tapp) : 
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Coil turn number : 
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Diameter of conductor in the coil : 
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Mean length of the turn lz : 
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Weight of lamination - the first objective function : 

(13) 
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Weight of permanent magnets - the second objective 
function: 

(14)                 Pm Pm m m iG 2 p d L .  
 

Weight of the winding - the third objective function: 

(15)                
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Copper power loss - the fourth objective function: 

(16)         
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Iron power loss - the fifth objective function: 
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In the presented novel design of the permanent magnet 
machine, expressed in (3) - (12), the leakage flux is 
neglected i.e. it is assumed that all ampere-turns contribute 
to the power conversion. This simplification may lead to 
high value of the slot height h, therefore the constraint 

h < 0.09 [m] 

is introduced. 

The diameter D  (0.1 , 0.4) (m) and the slot height 
h  (0.005 , 0.09) (m) are the arguments of all considered 
objective functions (13) - (17). 

The values of all constants of the analysed machine are 
summarised in Table 1. 

 
Table 1. Design constants used in computations 

Symbol Constant Value [unit] 
PN rated power 20,0 [kW] 
p number of poles 4 
n rotation speed 25,0 [s-1] 
ml design parameter 3,0 
Uf rated voltage 230 [V] 
N number of slots 36 
c thermal conductivity 0,7 [W m-1deg-1] 
 convection coefficient 20,0 [W m-2deg-1] 
Cu copper conductivity 56 106 [Sm-1] 
kv slot filling factor 0,5  
rm permeability of magnets 1,1  
m dimension (see Figure 3) 3,0 [mm] 
t dimension (see Figure 1b) 1,0 [mm] 
 dimension (see Figure 1b) 1,5 [mm] 
h4 dimension (see Figure 1b) 3,0 [mm] 
Br magnetic remanence 1,1 [T] 
Bnt acceptable flux density in the 

core 
1,6 [T] 

Tapp acceptable temperature 120 [deg] 
 

Multiobjective Design 
In this Section the dimensionality reduction of the 

permanent magnet machine multiobjective design (3) - (12) 
is performed. The main purpose of the analysis is to com-



PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 96 NR 7/2020                                                                                        89 

pare results from the full, five-objectives problem (13) - (17), 
with the reduced four- and two-objectives ones. 

The Non-dominated Sorting Genetic Algorithm 
(NSGA-II) [3] is employed in the computations. It is a very 
effective algorithm which incorporates elitism and does not 
require a sharing parameter to be chosen a priori. In this 
paper the real-coded representation of the design problem 
is employed. 

Parents are selected from the population using the 
binary tournament selection method, based on the rank and 
crowding distance. The algorithm uses the Simulated Binary 
Crossover (SBX) scheme and polynomial crossover. The 
distribution is obtained from a uniformly sampled random 
number in the range (0,1). The only stopping rule 
considered is the number of generations a priori defined. 
From tests concerning various number of generations, 
G = 100 has been selected. It brings satisfactory Pareto 
front approximation for comparison of results. 

 
Table 2. Basic parameters of the NSGA-II algorithm 

Algorithm parameter  Value 
Population N 400 
Generations G 100 
Pool size N/2 200 
Tour size  2 
Crossover probability  0,9 
Mutation probability  0,5 

 
All computations were ran within the MATLAB [9] for 

Windows workspace. They were repeated many times, but 
the full statistical analysis of the results exceeds the scope 
of this presentation. 

 
Objective Redundancy Analysis 

The first step is to examine the full set of five objectives 
functions (13) - (17). The approximation of the Pareto set 
obtained after G generations is used to evaluate the fit of 
the population. For each i-th objective function one obtains 
the N values. They are placed in a row vector Xi so the 
results form the M x N matrix. After finding the covariance 
matrix C (1), the M x M eigenvector matrix V (2) is 
computed and principal components are analysed. Sample 
results for the full set of M=5 objective PCA are presented 
in form of eigenvalues, arranged in order of decreasing 
eigenvalue, and corresponding eigenvectors (18). The 
results and values presented hereafter are typical for the 
evolutionary computations performed by authors during this 
study. 
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Analysing elements of the eigenvector v1 corresponding 
to the largest eigenvalue λ1 (first principal component) one 
can observe that the first (equation 13) and second 
(equation 14) objectives are the least conflicting. On the 
other hand the third one (equation 15) is the most 
conflicting with the first (and second as well). It may be 
concluded that either the first or second objective may be 
redundant in this problem. In further research the second 
objective will be discarded. 

After removing the second objective (14) and replacing 
of the first one (13) by the sum of the first (13) and second 

one (14) one has to repeat the calculations for reduced 
four-dimensional objective space now defined. 

The second step of dimensionality reduction procedure 
concerns the four-dimensional objective vector defined as 
[GFe+GPm , GCu, PCu, PFe]. The PCA analysis gives 4 x 4 
covariance matrix C (1) whose eigenstructure, after 
arranging in order of decreasing eigenvalue, is presented in 
(19).  
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Repeating the steps performed for five-objectives 
optimisation one has to analyse first principal component 
(eigenvector v1). It is clear from (19) that the first and the 
fourth objectives are the least conflicting. 

After removing the fourth objective (17) and replacing of 
the first one (12) by the sum of the first (13) and fourth one 
(17) calculations are performed for reduced three-
dimensional objective space. For sake of compactness, the 
details of the other two steps are not reported, as the 
procedure is analogous to the first one. 

The final design problem formulation is for two 
objectives only. The first criterion is the weight of the 
winding (15). The second objective, denoted by the F, is the 
sum of the rest four objectives (13), (14), (16), (17). 
They have no physical meaning because the sum of 
kilograms (e.g. GFe) and watts (e.g. PCu) cannot be 
calculated. 

(20)  F = 1GFe+2GPm+3PCu+4PFe . 

To simplify the analysis, in all steps, all coefficients are 
set equal one, i.e. 1= 2= 1 [kg-1], and 3= 4= 1 [W-1].. 
The PCA NSGA-II [4] is employed in the computations. 

 

Results Analysis 
Two approximations of Pareto sets for the five-

objectives and the two-objectives optimisation respectively 
are presented in figure. 5, showing that with dimension 
reduction population tends to concentrate. 

Please note the Pareto set approximation for the two-
objectives optimisation in figure 5(b) is plotted on a different 
scale to the five-objectives result. 

The result for the four-objectives optimisation is very 
similar to the five-objectives one and is not presented for 
sake of compactness. 

Pareto set approximation for the two-objectives 
optimisation may be considered a good projection of Pareto 
set approximation for the five-objectives problem. It is 
possible to explain the high concentration of solutions by 
comparing the 3D view of the five-objectives surfaces with 
surfaces for the two-objectives problem (not presented for 
sake of compactness). 

It is evident that close to the two-dimensional Pareto-
front approximation (represented by crosses) the shape of 
reduced objective functions almost matches the surface of 
the F objective (20) The cut down, loosely spaced, solutions 
for the five-objectives (Figure 5(a)) may be attributed to the 
reduced objectives. 

The analysis of solutions to multidimensional problems 
is always challenging. In the case of five objectives, even 
synthetic evaluation is problematic. For this reason, and 
because of difficulties with multidimensional visualisation, 
the comparison approach is applied. 
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a) five-objectives Pareto set approximation 

 

b) two-objectives Pareto set approximation 

Fig.5. The Pareto sets approximations for changing number of 
objectives 

 
The solution sets are presented in figures 6 and 7 for 

selected objectives only. In figure 6 three solutions 
represented by characteristic PCu(GCu) are compared. The 
functions under consideration describes the generator 
winding ((16) and (15) respectively) which is one of the 
most important parts of the electric machine. The sample 
results in figures 6(a)-(c) are computed from the Pareto set 
approximations for the five-, four- and two-objectives 
optimisation respectively. 

The characteristic F(GCu), (20) and (15) respectively, 
seems to be more synthetic for our analysis because in 
the two-objectives space the set F(GCu) is the Pareto front 
approximation. Applying the same comparative approach 
the results are presented in figures 7(a)-7(c). 

Again, the considerable parts of all three sets presented 
remains unchanged. 

 

 
a) five-objectives Pareto set approximation 

 
b) four-objectives Pareto set approximation 

 

 

c)  two-objectives Pareto set approximation 

Fig.6 The weight winding (15) - copper power loss (16) for the 
Pareto sets approximations for a) five-, b) four-, c) two-objectives 
respectively. Please note the change of scale. The c) is 
enlargement of the dashed rectangles in a) and b). Number of 
points (solutions) is constant 

 
The dimensionality reduction left this part of the 

PCu(GCu) characteristic basically unchanged. This result is 
projection of the Pareto set approximations concentration, 
as presented in figure 5. 

The same effect was observed over the course of this 
study for all other (13) - (17) design objectives not 
presented for the sake of compactness. 

 

 
a) Pareto set for the five objectives optimisation 
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b) Pareto set for the four objectives optimisation 

 
c) Pareto set for the two objectives optimisation 

 
Fig.7. The winding weight (15) and objective defined by (20) for the 
Pareto sets approximation for a) five- b) four- c) two- objectives 
optimisation. Please note the change of scale. The 7(c) is enlarge-
ment of the dashed rectangles in a) and b). Number of points 
(solutions) is constant 

 
The reduction of the five-objectives optimisation problem 

to the two-objectives one gives the DM a much clearer view 
of the Pareto front approximation. The advantage for a 
designer - Decision Maker is obvious. 

 

Conclusions 
The results of the Pareto-optimal design of the 

permanent magnet generator presented in this paper, 
demonstrate the Pareto-optimal set do not change much in 
the objective reduction process. 

The comparative analysis of the selected characteristics 
of obtained sample results, describing the machine design, 
shows that applied PCA reduction procedure, implemented 
as the PCA NSGA-II, preserves the Pareto front approxi-
mations distribution on selected planes. 

This paper provides a basis for further research with a 
more detailed generator models including saturation of the 
magnetic circuit [8]. Future research will also include more 
detailed statistical analysis of the results. 
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