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Non destructive evaluation based on time stepping finite 
element electromagnetic fields and mechanical structural 

deformation coupling models 
 
 
Abstract.  The paper deal with high sensitive Non Destructive Testing of ferromagnetic materials based on the maximum mechanical structural 
deformation versus maximum eddy current electromagnetic force behaviors. Both physical quantities are computed from the transient 
electromagnetic fields and mechanical structural deformations models solved using the finite element method combined with the Newton–Raphson 
(N–R) algorithm. The proposed models are applied for an electromagnetic actuator (EMAs) evaluation through the comparison between the 
maximum deformation-maximum force profiles for healthy and geometrical defect cases under various lift-offs. 
 
Streszczenie. W artykule przestawiono czułą metodę defektoskopii materiałów ferromagnetycznych bazującą na związku miedzy deformacją I 
prądami wirowymi. Do analizy defektów struktury wykorzystano metodę elementów skończonych oraz algorytm Newtona-Raphsona. Metoda badań 
nieniszczących bazująca na analizie pola elektromagnetycznego, i  związku między deformacją mechaniczną a prądami wirowymi. 
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Introduction 
     Ferromagnetic materials in electromagnetic 
devices/actuators (EMDs/EMAs) are submitted to unwanted 
problems, such as vibration, acoustic noise and geometrical 
defects or properties degradations defects [1-4]. Although 
these phenomenon are mainly characterized by the coupled 
electromagnetic fields - mechanical equations [5, 6]. In this 
context, the multi-physics numerical analysis based on the 
Finite element method (FEM) is used to develop modern 
and cheaper innovative devices for use in investigations in 
the industry .Finite element method (FEM) is a widely used 
and well suited numerical method to solve electromagnetic 
field (EMF) include eddy current distribution and 
nonlinearity of materials and mechanical problems [7,9]. 
     The paper investigate the relation between both the 
eddy current magnetic force density distribution and their 
impact on the structural deformation in order to characterize 
geometrical defects in conductive and ferromagnetic 
materials of electromagnetic actuators (Fig.1).The multilevel 
transient strong coupling tool is developed based on the 
finite element method (FEM), between transient magnetic 
and electric fields equations which are sequentially coupled 
to the mechanical structural dynamics through the magnetic 
force density. The eddy current equation expressed in 
terms of the magnetic vector potential (MVP) is coupled 
with the electric voltage-fed windings circuit equations 
obtained from Kirchhoff laws. 
      In addition, the (EMF) model integrates realistic 
geometries and the non-linear magnetic material properties 
through the magnetic flux density–magnetic permeability 
dependence handled by the iterative Newton–Raphson (N–
R) method. In order to numerically predict the structural 
deformations, the mechanical behaviour of the 
ferromagnetic material is correlated with the volumic and 
surface magnetic forces densities distributions based on the 
Lorentz induced eddy current (LZEC) formulas, and 
computed from the time-stepping (N-R) electromagnetic 
coupled field model. 
     The presence of dimensional/properties defects in the 
electromagnetic devices modifies the magnetic flux density 
path and consequently exacerbate the no-homogeneous 
induced eddy currents petterns which initiate a major early 
failure of the pieces. The non destructive evaluation is 
studied through the maximum deformation according to the 
normal and tangential components of the magnetic force 

density, which allows the analysis of the mechanical 
deformation for small and large air gap for healthy and 
differents defects sizes. The developed multi-physics 
(EMF)–(MDef) time-stepping (FEM) model tools were 
implemented using the Matlab software. 
 
Description of the Studied Actuators 
     As shown in Fig.1, the electromagnetic actuator is 
schematically consists of the two windings regionscoil fed 
from voltage sources Vc1(t) and Vc2(t) with circulating current 
Ic1(t) and Ic2(t). The windings are mounted on ferromagnetic 
core core. The load region load is made of high-
performance ferromagnetic material. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.1. Typical components of the electromagnetic actuator. 
 
Magnetic field and circuit equation (FEM) formulation 
     Extracted from Maxwell’s equations, the transient 
magnetodynamic field model expressed in term of magnetic 
vector potential (MVP) which has only the z-direction 

component  zAA ,0,0 since the problem is two-

dimensional (2D) in the(x, y) plane is given as follows: 
 

 (1)   
 

 
 

t

A
I

S

Nc

y

tyxA

Ayx

tyxA

Ax

z
c

c

z

z

z

z





































,,1,,1

 

 



136                                                                            PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 96 NR 7/2020 

where: Ic– the winding current, Sc –the total cross-sectional 
area of the winding turns, Nc – the number of turns,– the 
electric conductivity, µ(Az) – the non-linear magnetic 
material permeability associated with the B–Hmagnetization 
curve. 
 

     The electric equation of the windings currents Ick(t) with 
the source voltages Vck(t) was obtained from the Kirchhoff 
law as follows: 
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where: k=1,2 – the windings number, (Rc, Lend) – the 
resistance and the self-inductance respectively. 
 

     After using the (FEM) discretization and the MVP 
approximation function in equations (1-2), the finite element 
formulation of the strong coupling between the electric 
circuit equation (2) with the (MVP)-based magnetic fields 
equation (1) leads to the differential first-order algebraic 
system of equations written as 
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where: [Az] –the nodal (MVP), Ic1and Ic2 –the windings 
currents respectively.  
 

The stifness matrix[S] ,and the coupling 
matrices[DS1]and[DS2]are computed from the integral 
functions:  
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     In equation (3), the time derivatives of the vector 
potential and the winding currents are approximated by first-
order difference ratios. 
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where: t –the length of the time steps,  –constant defining 
the time integration schema. They have =3/2a value of 
Galerkine methodfor the used in this work.  
 

     The first ordrer time-derivative approximation of the 
vector potential and winding currents in adition to the non-
linear magnetization B(H)curve need the use of the time 
stepping schems associated to the Newton-Raphson (N-R) 

algorithm[7,8].Then  algebraic equation system (3) 
becomes : 
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     The Jacobian matrix system [P]in equation (8) is given 
by the following matrix elements (9):
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To update the iterativevalues of the nodal magnetic vector 
potential, the relaxation 0.5≤≤1factor may be used. 
 

Calculation of magnetic eddy current forces 
     There are several physical or mathematical 
representations methods to formulate the volume fV and 
surface fS electromagnetic forces densities exerted on a 
ferromagnetic medium [10-12] .The Korteweg Helmholtz 
force density fem for a magnetic plate in (x,y) plane is 
expressed as: 
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where: Hx and Hy –are the tangential and normal magnetic 
field located on the plate surrounding the surface. Jeddy – The 
induced eddy current. 
 

     The components of the volume magnetic force density 
components(fVx,fVy)expressed from the Lorentz eddy current 
force (LZEC) formulas in non-linear magnetic material (NL) 
can be written as follows for the 2D(x,y)plane at each step 
time:  
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      The tangential and normal component of the surface 
magnetic force density(fSx,fSy) expressed from the Maxwell 
stress tensor formulas for ferromagnetic material with high 
magnetic permeability is written as:should be as: 
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Mechanical deformation FEM formulation model  
     Coupled electromagnetic fields in ferromagnetic media 
induce volume and surface electromagnetic force density 
sources occurring in the mechanical equilibrium equations 
[12-14]. According to (2D) (x,y) cartesian coordinate system, 
the structural mechanical equilibrium differential equation 
expresses the relationship between the mechanical stress 
components and the magnetic force density when assuming 
small deformations and non-dynamic behavior due to the 
inertia can be written as: 
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where: xx,yy,xy– the stresses along the x, y and xy-
directions, respectively, (U) – the mechanical stress 
tensor,U – the displacement vector. 
 

From the concepts of stress and strain, the generalized 
Hook's law states that the components of stress are linearly 
related to the components of strain .The generalized 
stress-strainrelation given by the Hook's law in the 
case of linearity elastic isotopic (2D) solid is written 
as:should be as: 
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where: E – Young’s modulus,  – Poisson’s ratio. 
 

According to the consideration of small deformations, 
the linear strain deformation–displacement relationships 
expressed in general matrix form as follows:  
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Discretization by (FEM)of the mechanical part of the 
equations (13) applying the weighted residual method and 
applying the substitution of the constitutive equation 
(stress–strain) gives us: should be as: 
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where: load –the mechanical domain of the plate, load – the 
boundary ofload, 1and 2– are the weighting functions. 

After substitution of the stress–tensor equation (14) and 
the strain–displacement equation (15) into equation (16), 
and interpolating the body displacements using the (FE) 
shape functions, this gives:  

(17)  

e
load

Sy

Sxe
load

Vy

Vx

e
load

d
f

f
d

f

f

d

v

u

v

u

v

u

xyxyxy

yyy

xxx

xyy

yxxE

e
load

e
load

e
load























































































































































 
















 

















2

1

2

1

3

3

2

2

1

1

332211

321

321

222

111

2

      

000

000

2

1
2

1

1













 

 

where: (x, y) – the shape function associated with the 
displacements of the nodes (j=1,2,3) of each triangular 
element j. 
 

As a result, the stiffness matrix [K] and magnetic force 
density vector [F] build the global algebraic equations 
system written as: 
(18)          FFFUK SV   
 

     According to equation (17), the elementary stiffness 
matrix of the algebraic system in equation (18) is expressed 
as follows:should be as: 
(19)        




e
load

e
load

T
ij dBGBK  

Numerical Implementation  
     In this part, we present the results of the simulations 
obtained from the computation code analysis package of 
the coupled magnetic, electrical and mechanical equations 
models,developed and solved by the nodal based (FEM) 
tools implemented under Matlab software.Physical 
boundary conditions are imposed according to 
electromagnetic field and mechanical deformation models 
as depicted in Fig. 2.  

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
Fig.2. Electromagnetic and mechanical deformation boundary 
condition. 
      
     The relevant geometrical and physical propertiesof the 
actuators is presented in Table1. The dimensions of the 
simulated samples under geometrical defectsare 
explainedand given in Fig. 3 and Table 2 respectively.  
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Table 1. Physical and geometrical parametrers  of the actuators 
Electrical and 
Mechanical 
Parameters 

Values Geometrical 
Parameters 

Values 
[mm] 

Young Modulus 
(E) 

200 KN/mm2 Plate 
Length(Lp) 

170 

Poisson 
Ration() 

0.33(Vacofer S1) 
0.24(Fe-Cu alloy) 

Plate 
Thickness(ep) 

15 

Winding 
Resistance    

(Rc) 

1Ω Lift-off  1-5 

Winding 
Inductance 

(Lend) 

5mH Winding 
Width(hw) 

37 

Plate Electrical 
conductivity  
(unit MS/m) 

10.21(Vacofer S1) 
9.1  

(Fe-Cu alloy ) 
 

 
Winding        

Length(Lw) 

 
 

15 

Supply voltage 
(V)  

40V _ _ 

 
 
 
 

 
 
Fig.3. Studied of plate configuration defect. 
 
Table 2. Different dimensions of the simulated defects  
Defects dimensions  Length (a) [mm] Depth (d) [mm] 

Defect 1 6 0.75 
Defect 2 6 1 
Defect 3  10 1 
Defect 4 6 1.25 

 
The results of coupled magneto-electrical simulations 
(FEM) 
     At each step timeof t=1ms, the algebraic system in 
equation (8) corresponding to the electromagnetic model 
based (2D)-(FEM) transient andNewton–Raphson algorithm 
was iteratively solved to obtain the node values of the 
magnetic vector potential and the winding current at each 
time step, according to the actual magnetic permeability 
values.  
     Fig.4.shows the equipotential lines of the steady state 
magnetic vector potential  nodal values, which are 
particularly concentrated on the cross section of the plate 
faced to the magnetic core and excited coils. 

 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
 

Fig.4. Steady state distribution of the magnetic vector potential 
at t=0.05s. 

 
     The field line distribution and the magnetic flux density 
map-vectors are plotted in Fig.5 . The maximum value of 
magnetic flux density in the plate domain is about 1.6 T 
which corresponds to the nonlinear region of the B-H curve 
associated to the Vacofer S1 material.The associated coil 
currents  are given in Fig.6 .  

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Fig.5. Steady state of the magnetic flux density spatial distribution. 

 
 
 
 

 
 
 
 
 
 
 
 
 
 

 
 

Fig.6. Winding transient current. 
 

    The magnetic force density map vectors are plotted in 
Fig. 7, in where we note a significant force density in the 
middle of the plate.  
 

 
 
 
 
 
 
 
 

 
Fig.7. Steady state of the magnetic force density: vector field 
orientation. 

 
     Fig. 8 and Fig. 9 shows respectively the maximums 
induced eddy current density and magnetic force density 
behavior of non linear magnetic materials according with x-
coordinates for different electrical conductivity (Vacofer S1 
and Fe-Cu alloy material).The highest electrical conductivity 
lead to highest eddy current and magnetic force density 
values. 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
Fig.8 Maximum eddy current density as function x-coordinates for 
two ferromanetic material.  
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Fig.9. Maximum magnetic force density as function x-coordinates 
for two ferromagnetic materials. 
 
    Fig.10 show  the time variation of the maximum values of 
the nonlinear magnetic force density in the positions 
A(0mm, 9.5mm), B(25mm, 9.5mm), and C(−25mm,9.5mm) 
of the Vacofer plate. The peak values of the volume 
magnetic force density fy-components were positive and 
about 5.5 MN/m3 and 2 MN/m3 ,respectively for the A, B 
and C points of the plate at the lift-off=5mm. A maximum 
magnetic force density occurs around the 7ms time. These 
non-linear force–eddy current–magnetic flux density and 
force–magnetic permeability relation ships and the high 
force variation were the major reasons for the production of 
large forces, which allowed a design with a large 
deformation. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.10. Transient magnetic force density in the nonlinear magnetic 
materials obtained with three points in the Vacofer S1 plate. 
 
     Fig.11 and Fig.12 present respectively the transient 
maximum nonlinear magnetic force density at healthy and 
different geometrical defects according to the lift-off.The 
nonlinear magnetic force density is greatly affected by the 
reduced of the lift-off and defects presence. Increased of 
the defects shape lead to the increased of the magnetic 
force density of the region surrounding the defect. 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
Fig.11. Transient magnetic force density in healthy Vacofer S1  
Plate with differents lift-offs.  

 
 
 
 
 
 
 

 
 
 
 
 
 

 
 
Fig.12. Transient magnetic force density inhealthy and faulty 
Vacofer S1 plate at lift-off=5mm.  
 
The results of mecanical problem simulations (FEM) 
     In this section, we performed a transient (FEM) 
mechanical–structural deformation analysis of the 
conducting magnetic plate under the nonlinear magnetic 
force density excitation. Special attention was paid to the 
moments that the magnetic force densities reached a 
maximum, which caused significant deformations on the 
plate. The structural mechanical deformation equation was 
sequentially coupled to the electromagnetic equations 
through the nonlinear magnetic force density under the 
independent (EMF) and mechanical meshes.  
     The (FEM) analysis of the mechanical structural 
deformation model allowed us to identify the most stressed 
areas of the previous elements whose shape was 
appropriately designed so as to reduce the maximum 
stresses and deformations. The obtained time results of the 
maximum deformation-maximum magnetic force density 
profiles of the nonlinear magnetic material Vacofer S1 for 
healthy and geometrical defect cases under various lift-offs 
were presented in Fig. 13 and Fig. 14. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.13. Maximum deformation xy in healthy Vacofer S1 plate with 
different lift-offs. 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
Fig.14. Maximum deformation xy in healthy and faulty Vacofer S1 
plate at lift-off=5mm.  
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      Fig.13 shows that reduced lift-off leads to increased 
values of stress and repetitive deformations, which could 
exceed the fatigue limit of the plate. In Fig.14 the maximum 
value of the deformation increased with the increased 
defects shape. As the materials electrical conductivity and 
nonlinear magnetic properties are highest, the mechanical 
deformation is greatly affected by the defects through 
increased and exceeds random distribution of the magnetic 
force density.  
     Table 3 summarizes the peak values of the maximum 
nonlinear magnetic force density fy component and the xy 
deformation for the different lift-offs at healthy and defect 
cases for the Vacofer S1 nonlinear magnetic material.    
  
Table 3. Peak values of the magnetic force density and deformation 
according to the lift-off at healthy and defect cases. 

Lift_offs [mm] fy magnetic eddy 
current  force density  

[MN/m3] 

xy deformation (peak 
values) [µm] 

1.5 (healthy) 5.8927 0.1907 
3(healthy) 5.7462 0.1857 

 
 

5 

healthy 5.4465 0.1744 
defect1 6.5154 0.2398 
defect2 7.1957 0.2408 
defect3 7.5970 0.3088 
defect4 7.5488 0.2956 

 
Conclusion  
     The paper has proposed detailed pulsed transient-
voltage electromagnetic fields and structural mechanical 
deformation coupled models based finite element method in 
order to establish the kind between the maximum 
mechanical deformation-maximum force profiles named the 
mechanical deformation impedance which allows to a non 
destructive testing of ferromagnetic materials used in 
electromagnetic actuators (EMAs), under the healthy and 
geometrical local defects with different lift-off. The 
computed magnetic force density and structural deformation 
results obtained from the coupled (FEM) magnetic field–
electric circuit and mechanical structural deformation 
models were qualitatively in good agreement with the 
models found in the scientific literature.  
     The developed models are a promising   contribution in 
the area of the non-destructive testing, safety, and 
threatened by wake-induced fatigue due to repetitive 
deformation strain activated by a pulsed voltage source. 
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