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Review of solutions for the application of example of machine 
learning methods for Motor Imagery in correlation  

with Brain-Computer Interfaces 
 
 

Abstract. Presently, numerous public databases presenting the collected EEG signals, including the ones in the scope of Motor Imagery (MI), are 
available. Simultaneously, machine-learning methods, which enable effective and fast discovering of information, also in the sets of biomedical data, 
are constantly being developed. In this paper, a set of 30 of some of the latest scientific publications from the years 2016-2021 has been analyzed. 
The analysis covered, among others: public data repositories in the form of EEG signals as input data; numbers and types of the analyzed tasks in 
the scope of MI in the above-mentioned databases; and Deep Learning (DL) architectures.  
 
Streszczenie. Obecnie dostępne są liczne ogólnodostępne bazy danych prezentujące zebrane sygnały EEG, w tym z zakresu obrazowania 
motorycznego (MI). Jednocześnie stale rozwijane są metody uczenia maszynowego, które umożliwiają efektywne i szybkie odkrywanie informacji, 
także w zbiorach danych biomedycznych. W niniejszym artyule przeanalizowano zestaw 30 spośród najnowszych publikacji naukowych z lat 2016-
2021. Analizie poddano m.in.: publiczne repozytoria danych w postaci sygnałów EEG jako dane wejściowe; liczby i rodzaje analizowanych zadań z 
zakresu obrazowania motorycznego w ww. bazach; i architektury Deep Learning (DL). (Przegląd rozwiązań do zastosowania metod uczenia 
maszynowego na potrzeby  obrazowania motorycznego w korelacji z interfejsami mózg-komputer). 
 
Keywords: Motor Imagery; EEG; BCI; machine learning; deep learning; deep neural networks. 
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Introduction 

In everyday medical practice, a physician, after 
becoming acquainted with the result of the realized data 
acquisition in the scope of the measurement of brain 
activity, most often focuses on the analysis of the 
electroencelographic signal (EEG). The analysis may be 
affected by an error due to overlooking some specific 
features in the EEG signal, which can often be attributed to 
tiredness of the person analyzing the result. Furthermore, it 
is worth noting that EEG signals are commonly used in 
many other branches of science apart from medicine, 
including automation and robotics for controlling real objects 
[1] as well as in the scope of neuromarketing at the stage of 
creating a commercial. Thus it is even more important to 
develop solutions, which assist proper analysis of 
biomedical data among people without typically medical 
education.  

Presently, Brain-Computer Technology (BCI) develops 
dynamically in the scope of MI, which is caused by the 
application of the research results carried out in the area of 
both medical and technical sciences. In practice, the basic 
task within MI is realized through imagining the 
performance of a certain movement without its real 
performance, including, among others, a hand movement: 
right, left; foot: right, left. The essential problems that 
accompany the researchers at the stage of developing 
solutions within MI based on non-invasive BCI (by the 
measurement of the EEG signal) are the problems 
resulting, among others, from: EEG signal non-stationarity, 
both biological and technical artefacts etc. [2].  

For many years, research teams used in practice 
traditional neural networks in the scope of solutions based 
on BCI technology. However, during the recent few years, a 
revolution in the scope of DL took place, which makes the 
data analysis at a large scale possible. One of the current 
limitations in this scope is the fact of existence of the EEG 
signal databases in the scope of MI which are not big 
enough. Therefore, their proper selection for the works 
carried out and their constant development are vital. 

MI is presently one of the most often used paradigms in 
BCI technology, which may be used successfully to assist, 

increase sensorimotor functions of disabled patients. This is 
proved, among others, in the research by Z. T. Al-Qaysi, et 
al. in publication Review of the EEG-based wheelchair 
control system: Consistent taxonomy, open challenges and 
recommendations [3] and R. Sitaram et al. in Time 
classification of multichannel near-infrared spectroscopy 
signals for motor images for brain-computer interface 
development [4]. MI also finds its application in 
entertainment and in intelligent solutions for healthy people 
[5, 6]. It is worth mentioning that various ConvNet models 
may realize extracting various spatiotemporal features, thus 
the architecture of convolutional networks has impact on 
their efficiency and accuracy.  

Brain-Computer Interface technology 

The beginnings of BCI date back to year 1964.  It was in 
that time that a British neurophysiologist William Grey 
Walter developed a working interface which gave a 
beginning for BCI. During one of the procedures he 
connected electrodes to the patient’s cerebral cortex and 
based on when and how the patient switched slides on the 
projected with a button, he recorded his neural activity. 
Next, he changed the system configuration so that it would 
change a slide when the patient thought about it. However, 
Walter never announced his discovery. In 1969, Eberhard 
Fetz et al. presented their studies, in which the apes were 
the participants, for the first time. The apes mastered 
control on the deflection of the meter arm. When the needle 
passed a given point, the animal got a reward. In this way 
the apes learned how to control their brain activity. The first 
published research on BCI was presented by Jacque Vidal 
in 1973: “Toward Direct Brain-Computer Communication”.  
In the system that was developed by him, he used induced 
visual potentials, which he recorded, from the scalp visual 
area to determine the direction in which the person tested 
wanted to move a cursor. Philip Kennedy is considered to 
be the constructor of the first intracranial BCI. He together 
with his coworkers implanted neurotropic electrode cones to 
the cerebral cortex of apes. Miguel Nicolelis was regarded 
as an advocate of using a bigger number of electrodes 
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distributed on the whole brain area so that the signal 
obtained would be as good as possible and could be used 
to control BCI. In 1990s, he created an interface which 
decoded  brain activity of apes and transferred the signal to 
the appliance which reproduced their movements on the 
arms of a robot. The appliance worked in real time. 
Summing up, it should be stressed that BCI interfaces can 
be divided into two types: invasive and non-invasive ones. 
Invasive interfaces are implanted directly into the gray 
matter of the brain. The advantage of this method is 
obtaining good quality signals.  Its disadvantage is, first of 
all, intrusion on a human body. After some time, the 
implanted electrodes may film over with a scar layer – it is a 
natural foreign body reaction of an organism.  Non-invasive 
interfaces do not interfere with a human body, thus they are 
used definitely more often than the invasive methods. The 
advantages of these interfaces are easiness to wear, 
popularity and availability. Their disadvantage is a very 
weak signal, which is suppressed by the skull and a big 
number of artefacts which can affect the quality of the 
emitted signal.  

From the point of view of development of modern 
solutions within brain-computer technology, the phase of 
extracting features from the signal measured is vital. In 
practice there are a lot of techniques of feature extraction, 
nevertheless, as research shows, they are not as reliable as 
automated methods. In particular, it is important in the 
scope of solutions basing on MI, i.e. movement imagining. 
MI makes it possible, both for healthy and disabled people, 
to improve the work of their brain. However, from the 
analytical point of view, the problem lies in managing with 
multi-dimensional signals collected in the scope of MI. Non-
linearity and non-stationarity of signals are of great 
significance in this case. The use of manually developed 
techniques of extracting features with MI data requires the 
process of calibration, which lasts about several dozen 
minutes. Therefore, the functions based on DL may be 
useful as the techniques of DL are not based on manually 
developed functions and often they do not require initial 
data processing – signals [7]. 

EEG signal 
Electroencephalography is the most common non-

invasive method of signal measurement of bioelectric brain 
activity. The electrodes distributed on the scalp register a 
signal which is a change of potentials caused by neural cell 
activity of the cerebral cortex. The EEG signal is measured 
based on the 10-20 system of the International Federation 
of Clinical Neurophysiology specifying the location of 
measuring electrodes on the scalp of the examined person 
(Fig. 1). The abbreviations in Fig. 1 correspond to the 
proper names of the electrodes according to the 10-20 
standard. The EEG signal consists of a few kinds of 
waveforms, including: Alpha waves – they appear when 
relaxing and closing the eyes, and disappear when opening 
the eyes and activation of a light stimulus. They are most 
prominent in posterior leads, i.e. in the place where visual 
centers are located. They have a frequency between 8 and 
12 Hz. Beta waves – typical for everyday activity. They also 
occur during mental alertness, e.g. during mathematical 
calculations or perception puzzles. They can be seen 
frontally and have a frequency between 12 and 30 Hz. 
Gamma waves – they accompany physical activity and 
motor functions. The range of this rhythm is from 30 to 100 
Hz. Delta waves – they are registered during deep 
meditation and in stages three and four of sleep. Their 
frequency does not exceed 4 Hz. Theta waves – they occur 
during a shallow sleep and they can also be observed 
during hypnosis. Another kind of theta rhythm is connected 

with cognitive activity, memorizing and associating. It is 
seen in the medial section of the brain [8]. Their frequency 
is between 4 and 8 Hz.   

 
Fig. 1. System 10-20 of EEG signals measurement [2]. 

 
EEG signals are characteristic of high complexity and they 
strongly depend on the person tested from whom they are 
received. Therefore, it is vital to collect EEG signals in 
databases, which has a key meaning for their application in 
training, validation and testing of machine learning models. 
EEG signal databases in the scope of MI have a few key 
features that should be considered during their selection, 
including, among others: a number and a kind of tasks in 
the scope of MI, a number of EEG channels, a number of 
persons from whom the acquisition process was carried out. 
These aspects are analyzed in the remainder of this paper.  

Deep learning (DL) 
The aim of the application of machine learning in 

database analysis is to eliminate the defects of the neural 
networks implemented so far. It is worth noting that DL 
makes it possible to carry out the extraction process 
comprehensively. Raw data may be introduced directly to 
deep neural networks with the aim of extraction, selection 
and classification [9]. The application of DL makes it 
possible to obtain a high degree of scalability of a solution; 
nevertheless the trainings of deep neural networks 
comprise a very big number of parameters, which 
significantly extends their training time compared with other 
approaches.  

The commonly used architectures in the scope of DL 
are, among others: CNN, recurrent neural networks (RNN), 
and autoencoders.  CNN is a popular method used within 
DL which is based on specialized type of linear operation as 
convolution. Convolutional networks are used for 
processing of various types of signals, including images, 
audio sequences, video and specific biomedical signals, 
such as EEG, ECG, and EMG. CNNs most often consist of: 
an input layer, output layer, fully connected and pairs of 
convolution pooling layers. Convolution is performed 
through convolution of signals from several filters to extract 
parallel and complementary features. The process of 
feature extraction begins from a low-level function. While 
scaling a convolutional network to consecutive depths, the 
network bandwidth increases [10]. The pooling layer acts as 
a strategy of reducing the sampling process. The analysis 
carried out shows that both the convolution layer and the 
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pooling layer have influence on the reduction of data 
complexity and the size of files. 

A RNN, in which a signal received on the network output 
goes on its input again, is another kind of commonly used 
architecture within DL. A one-time activation of the structure 
based on the feedback loop realized may generate a whole 
sequence of new phenomena and signals, because in the 
case of RNN the signals from the network output go back to 
its input and thus they generate new signals to stabilize 
output signals. The RNN networks are most often used for 
the analysis of time series, including speech recognition. 

Autoencoders are the simplest solution constituting an 
unsupervised neural network trained to code and decode 
data. Within this method, in the coding phase, input data 
are subjected to the space of smaller dimensions than the 
data space. During decoding, the reconstruction of real data 
is performed based on concealed features. 

 
Methods  

For the purposes of this study, the process of scientific 
databases exploration was carried out in February 2021 in 
the following databases: Web of Sciences, Science Direct 
and Scopus. It covered the period from February 2016 to 
February 2021.  The following five key words were used for 
searching: deep learning, motor imagery, 
electroencephalography. Furthermore, the abbreviations of 
those names were searched, i.e.: DL, MI, EEG. The articles 
which were repeated during the process were eliminated so 
that finally only one of the repeated elaborations would be 
considered. The exploration process ended with 30 
selected articles. 

Within the DL issue the articles which did not contain 
classifiers other than basing only on deep neural networks 
were selected. Within MI, the articles representing the 
classification of various motor tasks were selected, 
including the ones in which various systems for MI 
realization were offered. In the scope of the articles 
pertaining to EEG, only the articles with EEG signals were 
taken into account, excluding the ones which pertained to 
combination of EEG with other biomedical data acquisition 
methods, including MRI, NIRS, and PET.   

The data obtained as the result of this analysis were 
divided within the consecutive sections of this paper into the 
datasets with presentation of the kinds of tasks in the scope 
of MI, initial processing methods, and DL architecture.    

Review of the datasets including the kinds of tasks in 
the scope of MI  

The datasets in the papers reviewed, which were found 
for the purposes of this paper, are 5 publicly available 
repositories (listing in Table 1). The datasets differ from one 
another, among others, in the number of electrodes with 
which they were collected, the number of the people tested, 
and the kind of tasks in the scope of MI. Due to the fact that 
this paper refers to the issue of solutions for the purposes of 
MI, the most important variables in the datasets analyzed 
were the number and the kinds of tasks of MI performed by 
the persons tested during EEG signal registration. The 
number of electrodes from which the data were collected in 
the presented repositories is of a large span from 13 to 118 
and so is the number of persons from whom the data were 
collected – from 1 to 109. Imagination duration is shown in 
the range from 2 to 10 s.  

The analysis carried out shows that most datasets focus 
on the tasks of imagining the movement for the right or left 
hand/foot. A smaller number of the repositories found refer 
to MI in the scope of a wrist or elbow. The synthetically 
collected data in this scope are presented in Table 2.   

 

Table 1. A list of public datasets used for the purposes of the 
publication realization in the scope of motor imagery based on EEG 
signal. 

No. 
 

Name of 
dataset – 

public 
access 

Nu
mbe
r of 
elec
trod
es 

Numb
er 
of 

subje
cts 

 

Imagin
ation 
durati
on [s] 

 

Percentage 
share in the 
publication
s analyzed 

1 BCI 
Competition 
IV 2a 

22 9 4 33.3% 

2 BCI 
Competition 
IV 2b 

3 9 4 50.2% 

3 BCI 
Competition 
II 3 

3 1 6 6.6% 

4 BCI 
Competition 
III 4a 

118 5 2 6.6% 

5 PhysioNet 
EEG 

64 109 10 3.3% 

 
Table 2. A list of the number and types of the tasks analyzed in the 
scope of motor imagery in the datasets analyzed in relation to the 
publication 

No. 
 

Number 
of tasks 

in the 
scope of 

Motor 
Imagery 

Types of 
movement 
imagining 

Percentage share 
in the publications 

analyzed 

1 Two left hand, right 
hand 

56.8% 

2 Four left hand, right 
hand, foot, tongue 

33.3% 

3 Two right hand, right 
foot 

6.6% 

4 Five eye, feet, fists, left 
fist, right fist 

3.3% 

 
Review in the scope of initial data processing  

This section of the paper presents in a synthetic way the 
application of the initial signal processing for the purposes 
of further realization of DL in the MI process. Within all 
analyzed works, researchers used one of the three types of 
data formulation: time-series, calculated features and 
images. In the vast majority, from the methods available, 
the Common Spatial Pattern (CSP) algorithm was used in 
the feature extraction process in the publications analyzed. 
To a lesser degree, a Continuous Wavelet Transform 
(CWT) was used in practice, which results from the input 
data format for which it is used. Detailed data in the scope 
of this pre-processing are shown in Table 3.  
 
Table 3. A list of pre-processing methods used for the purposes of 
motor imagery realization using DL 

No. 
 

Name of the data processing 
method  

Percentage 
share in the 
publications 

analyzed 
1 Raw data – without the method for 

time-series used  
40.0% 

2 Common Spatial Pattern (CSP) for 
calculated features 

26.6% 

3 Empirical mode decomposition (EMD) 
for calculated features 

6.6% 

4 Continuous wavelet transform (CWT) 
for images 

10.0% 

5 Short-time Fourier transform (STFT) 
for images 

1.3% 

6 Fast Fourier transform (FFT) for 
images 

3.3% 

 



114                                                                           PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 97 NR 11/2021 

It is also worth adding that, often before transferring 
data for further analysis, a proper data filtration from 
biological and technical artefacts that may occur in it, is 
necessary. In this scope, the Independent Component 
Analysis (ICA) filtration method is most often used. In order 
to reduce the range of the signal frequency analyzed, other 
filters such as bandpass, low-pass and high-pass are used.  
 
Review in the scope of DL architectures   

The most common DL architectures used in the papers 
analyzed were: CNNs (being most often a combination of 
convolutional and recurrent or autoencoders) and RNN. 
There is no doubt that the most often used architecture was 
CNN, which occurred in 66.7% of the scientific publications 
analyzed.  

 

Table 4. A list of deep neural network architectures 
No. Name of deep neural network 

architecture 
Percentage share 
in the publications 

analyzed 
1 Convolutional neural network 

(CNN) 
66.7% 

2 Hybrid - Convolutional neural 
network (h-CNN) 

20.0% 

3 Recurrent neural network (RNN) 13.3% 
 

The most used activation functions in the research carried 
out are: Rectified Linear Unit (ReLU) and Exponential 
Linear Unit (ELU). During the network training process the 

parameters of deep neural networks are updated by using 
various optimization algorithms, in most cases they were 
Gradient Descent (GD) and Adam. Bayesian optimization 
was used definitely less often. 

Discussions 
Based on the results obtained it is concluded that there 

exist a few most often used EEG signal datasets which are 
successfully used for MI applying DL methods. The best 
known and presently commonly used datasets are: BCI 
Competition IV 2b and BCI Competition IV 2a. A smaller 
number of publications presents the use of BCI Competition 
II 3, BCI Competition III 4a, and PhysioNet EEG. The CSP 
algorithm and its variations are successfully used in the 
case of feature extraction in the scope of input data to the 
neural network. And the methods based on the CWT are 
used in the case of data in the form of images as input files 
to the neural network. It should be observed that in this 
case STFT is slightly more often used than CWT. 

CNNs are the most often used deep neural network 
architecture for classification of movement imagining in the 
research analyzed. A few of the studies analyzed proves 
superiority of the CNN method over h-CNN and RNN. 
However, there are also publications which prove that RNN 
are accurate enough for classification of the tasks based on 
movement imagining. The data collected synthetically in the 
scope discussed are shown in Table 5 (in Appendix).  

 

Appendix 
Table 5. Summary of the collected data from the 30 reviewed articles. 
No. Authors/Article Deep 

learning 
architecture 

Dataset Input 
formulation 

Activation 
function 

Optimization 
strategy 

1 Zhu X. et al., Separated channel 
convolutional neural network to realize 
the training free Motor Imagery BCI 
systems [7]  

CNN BCI C IV 2b CSP ReLU Adam 

2 Wu H. et al. A parallel multiscale filter 
bank convolutional neural networks for 
Motor Imagery EEG classification [8] 

CNN BCI C IV 2b Time-series linear Adam 

3 Li Y. et al.  A channel-projection mixed-
scale convolutional neural network for 
Motor Imagery EEG decoding [9] 

CNN BCI C IV 2a Time-series ELU Adam 

4 Tayeb Z. et al., Validating deep neural 
networks for online decoding of Motor 
Imagery movements from EEG signals 
[10] 

CNN BCI C IV 2b Time-series ReLU Adam 

5 Zhang D. et al., Making sense of 
spatio-temporal preserving 
representations for EEG-based human 
intention recognition [11] 

CNN, LSTM Physio 
Net 

Time-series - Adam 

7 Tang X. et al., Motor imagery EEG 
recognition based on conditional 
optimization empirical mode 
decomposition and multi-scale 
convolutional neural network [13] 

CNN BCI C IV 2b EMD ReLU SGD 

8 Dai G. et al., HS-CNN: a CNN with 
hybrid convolution scale for EEG Motor 
Imagery classification [14] 

CNN BCI C IV 2a 
BCI C IV 2b 

Time-series ELU SGD 

9 Olivas-Padilla B.E. et al., Classification 
of multiple Motor Imagery using deep 
convolutional neural networks and 
spatial filters [15] 
 

CNN BCI C IV 2a 
 

CSP ReLU SGD 

10 Xu G. et al., A deep transfer 
convolutional neural network 
framework for EEG signal classification 
[16] 

CNN BCI C IV 2b STFT ReLU - 

11 Li D. et al., Densely feature fusion 
based on convolutional neural 
networks for Motor Imagery EEG 
classification [17] 

CNN BCI C IV 2a 
 

CSP ReLU Adam 

12 Amin S.U. et al., Multilevel weighted 
feature fusion using convolutional 
neural networks for EEG Motor 
Imagery classification [18] 

CNN BCI C IV 2a 
 

Time-series ELU SGD 
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13 Tabar Y.R., A novel DL approach for 
classification of EEG Motor Imagery 
signals [19] 

CNN, SAE BCI C II 3 
BCI C IV 2b 

STFT ReLU GD 

14 Schirrmeister R.T., DL with 
convolutional neural networks for EEG 
decoding and visualization [20] 

CNN BCI C IV 2b Time-series ELU SGD 

15 Zhang R. et al., A novel hybrid DL 
scheme for four-class Motor Imagery 
classification [21] 

CNN, LSTM BCI C IV 2a CSP ReLU Adam 

16 Dai M., EEG classification of Motor 
Imagery using a novel DL framework 
[22] 

CNN, VAE BCI C IV 2b STFT ReLU GD 

17 Majidov I. et al., Efficient classification 
of Motor Imagery 
electroencephalography signals using 
DL methods [23] 

CNN BCI C IV 2a 
BCI C IV 2b 

CSP ReLU Adam 

18 Xu B. et al., Wavelet transform time-
frequency image and convolutional 
network-based Motor Imagery EEG 
classification [24] 

CNN BCI C II 3 CWT ReLU GD 

19 Ha K.W. et al., Motor imagery EEG 
classification using capsule networks 
[25] 

CNN BCI C IV 2b STFT SELU SGD 

20 Hassanpour A. et al., A novel end-to-
end DL scheme for classifying multi-
class Motor Imagery 
electroencephalography signals [26] 

SAE BCI C IV 2a 
 

Time-series - - 

21 Tang X.L. et al., Semisupervised deep 
stacking network with adaptive learning 
rate strategy for Motor Imagery EEG 
recognition [27] 

DBN BCI C IV 2b Time-series Sigmoid Adadelta 

22 Wang P. et al., LSTM-based EEG 
classification in Motor Imagery tasks 
[28] 

LSTM BCI C IV 2b 1d-AX Sigmoid Adam 

23 Lu N. et al., A DL scheme for Motor 
Imagery classification based on 
restricted boltzmann machines [29] 

DBN BCI C IV 2b FFT Sigmoid Conjugate 
gradient 

24 Zhang K. et al., Adaptive transfer 
learning for EEG Motor Imagery 
classification with deep Convolutional 
Neural Network [30] 

CNN BCI C IV 2b Time-series ELU SGD 

25 Zhang R. et al., Hybrid deep neural 
network using transfer learning for 
EEG Motor Imagery decoding [31] 

h-CNN BCI C IV 2b Time-series ELU SGD 

26 She Q. et al., A hierarchical semi-
supervised extreme learning machine 
method for EEG recognition [32] 

ELM BCI C IV 2b CSP Sigmoid - 

27 Luo T. et al., Exploring spatial-
frequency-sequential relationships for 
Motor Imagery classification with 
recurrent neural network [33] 

GRU BCI C IV 2a CSP ReLU SGD 

28 Chaudhary S., et al., Convolutional 
neural network based approach 
towards Motor Imagery tasks EEG 
signals classification [34] 

CNN BCI C III 4a CWT ReLU GD 

29 Lawhern V., et al., EEGNet: a compact 
convolutional neural network for EEG-
based brain-computer interfaces [35] 

CNN BCI C IV 2a Time-series Linear, ELU Adam 

30 Taheri S., et al., Convolutional neural 
network based features for Motor 
Imagery EEG signals classification in 
brain-computer interface system [36] 

CNN BCI C III 4a EMD, CSP ReLU - 

 
 
 

Conclusions 
According to literature studies carried out, MI, in recent 

years, was more and more often used by many researchers 
in the world involved in the brain-computer technology 
development, as a source of the control signal [37]. 
However, we should bear in mind the fact that the signals 
from MI are changeable due to physiological and 
psychological characteristics of each person, which makes 
their common implementation difficult. As the analysis 
presented shows, many researchers had used various 
feature extraction and classification methods before deep 
neural networks were created. Nowadays, unfortunately, 
the classification using deep neural networks encounters a 

problem of small sizes of datasets available publicly, and 
classifiers require many examples for proper learning. It 
should be stated that DL based on CNN architecture with 
rectified linear activation function is the most effective 
classification function in the scope of MI. The most often 
used activation functions in CNN and h-CNN studies are 
ReLU and ELU. Machine learning has the possibility of 
using all input data to training networks. It is also worth 
mentioning that, as research shows, a too large number of 
concealed layers not always leads to better efficiency, but it 
may lead to the problem connected with neural network 
overfitting.    
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