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Modeling and Scheduling Home Appliances using Nature 
Inspired Algorithms for Demand Response Purpose 

 
 

Abstract. Demand response (DR) refers to programs used in endeavors to reduce overall power consumption, manage consumption peak hour 
shifting, and reduce demand on service providers or utilities using different methods. This paper proposes a home appliance scheduler suitable for 
DR applications. In the proposed method, a controller controls thermal and shiftable loads, where thermal loads are empirical models that consider 
different factors. They produce the load profile of the home in consideration of different input parameters, e.g., setpoints and user tolerance ranges, 
and various factors, e.g., the room’s physical structure and the external environment. A scheduler uses the controller to implement load shifting using 
the whale optimization algorithm, particle swarm optimization, and gray wolf optimization (GWO) algorithms for three different occupancy and price 
schemes. Acceptable results were obtained by applying the models using various outer temperatures and user tolerance ranges. The results also 
demonstrate cost reduction of 38.59% with GWO for the first occupancy scheme. 
 
Streszczenie. Demand Response (DR) oznacza programy do redukcji poboru mocy, doboru czasu pracy, odbiorników energii elektrycznej. W 
artykule zaproponowano program użycia urządzeń domowych spełniający wymagania DR z uwzględnieniem termicznych warunków pracy. . 
Zaproponowano algorytmy optymalizacji.  (Modelowanie i programy użycia domowych odbiorników energii elektrycznej z wykorzystaniem 
algorytmów optymalizacji) 
 
Keywords: Demand Response (DR), GWO, WOA, PSO. 
Słowa kluczowe: zarządzanie odbiornikami energii, DTR  - demand response, algoryt,my optymalizacji. 
 
 

Introduction 
 Demand response (DR) occurs when a signal is sent by 
a utility to indicate the current power demand, and the 
user’s response to the signal to reduce total power 
consumption or power cost in kilowatt hours [1] in this 
process is sometimes referred to as demand side 
management (DSM). DSM can be performed manually by 
switching appliances on or off to satisfy the demand signal, 
or the appliances can be controlled automatically using 
home energy management systems (HEMS) or home 
energy management controllers [2]. HEMSs use various 
techniques and algorithms to schedule home appliances to 
reduce overall costs depending on the DR signals. The 
combination of accurate house appliances controllers that 
consider many appliance and environmental parameters 
with effective scheduling algorithms results in powerful 
HEMS and hence; distinct power cost reduction. 
 
A. Overview of Home Appliance Modeling 
 Here, various modeling and scheduling techniques 
discussed in the literature are introduced. Note that thermal 
loads are the focus of this HEMS, and different 
metaheuristic algorithms are explored to perform 
scheduling. 
 Thermal load modeling using white, black, and gray box 
models [3] have been proposed. These methods can be 
used to model thermal loads in both dynamic or static ways 
for use in load management and monitoring. An extended 
comparison between the three models and their use in 
temperature prediction and load management was 
introduced by F. Amara et al. [3]. White box models 
primarily depend on information about the building’s 
structure [4], and they are represented by differential 
equations comprising dynamic, static, linear, or nonlinear 
equations. However, white box models prone to errors due 
to inaccuracy in setting the air flow rate into a room or the 
rate of opening and closing windows [6]. 
 Black box models only show the relationship between 
the input and outputs of the system. Such models are 
typically used in error detection rather than optimization. 
Gray box models combine features of both white and black 
box models. In addition, gray box model consider 
parameters with physical and empirical significance such as 
the wall’s materials and thickness [5]. 

B. Load Scheduling and DR 
 DR can be implemented in different schemes, e.g., time 
of use (ToU), critical peak price, and others depending on 
the priorities. The ToU scheme is most frequently 
implemented in the literature [6]. 
 Two excellent nature-inspired day-ahead metaheuristic 
scheduling models have been developed [7], i.e., the binary 
multi-objective PSO and hybrid bird swarm/cuckoo search 
algorithms. The main objectives of these algorithms are to 
schedule home appliances away from peak periods by 
changing their on/off status for the next day while 
maintaining user comfort by reducing wait times. It has 
been proven that these two algorithms outperform existing 
algorithms relative to cost reduction [6]. Note that control 
over an appliance’s settings is not always possible because 
various appliances can only can be turned on or off, which 
could have significant effect on cost reduction and 
maintaining user comfort by allowing users to set tolerance 
ranges for each appliance rather than a general tolerable 
wait time. 
 Gray wolf optimization (GWO) has been used previously 
to facilitate energy conservation. For example, in [8] and [9], 
GWO was used to manage energy consumption in two 
power grids. Here, both grids were equipped with storage 
units, and GWO was employed to determine when power 
would be delivered to or taken from the grid for storage unit 
operation [8].In addition, GWO was applied to optimize the 
cost and size of storage units [9] in a similar case study. 
Here, it was found that GWO outperformed other relevant 
algorithms, e.g., PSO, the bat algorithm, and an improved 
bat algorithm, where the cost reduction of up to 25% and 
33.2% can be achieved in the two sources, respectively. 
However, this was done on a large scale, and load 
controllability for single households was not considered. 
 The whale optimization algorithm (WOA) is another new 
metaheuristic algorithm that has been proven effective in 
many applications. For example, Swalehe, Chumbo, and 
Marungsri [10] presented an appliance scheduling system 
using the WOA that considered multiple types of 
appliances, renewable energy sources, and storage units. 
This system achieves 40% electricity bill reduction without 
inclusion of renewable sources and approximately 53% with 
renewable sources. However, one drawback of this system 
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is that it only optimizes appliance on/off time, i.e., it cannot 
control setpoints or adjust the comfort levels of thermal 
loads. 
 In addition, Sharma and Saxena [11] presented a WOA 
scheduler for residential and commercial grids. Here, three 
strategies were employed for DSM, i.e., peak clipping, 
strategic conservation, and load shifting. Comparing the 
results of this system to two other algorithms 
(biogeography-based optimization and evolutionary 
algorithm) demonstrated that better cost and peak load 
demand reduction can be achieved using these three DSM 
strategies. 
 Another WOA-based cost optimization application was 
proposed previously [12], where the WOA was used to find 
the optimal production and operation cost for a system 
while solving a constrained economical dispatch problem. 
This algorithm was applied to multiple IEEE test systems 
with multiple thermal units. The algorithm was compared to 
PSO and LaGrange optimization, and it outperformed these 
methods with quicker convergence. 
 This paper proposes a comprehensive HEMS 
framework that comprises control and scheduling of home 
appliances (primarily thermal loads) to reduce the total 
power costs using DR schemes. The main contributions of 
this work are the ability to control more factors for each 
appliance, controlling set points and user tolerance t levels 
for each appliance (rather than simply turning appliances on 
or off), and considering more contributing factors, e.g., the 
building’s physical structure and external temperatures. We 
first discuss empirical modeling of appliances, a complete 
house controller, and scheduling, which, to ensure 
reasonable validity, was considered based on three 
different occupancy and price schemes. The methodology 
followed in the modelling of the controller and the schedule 
is described in the next section. Following that, the results 
of both the controller and scheduler are presented, and 
finally the conclusion states the main finding of this 
research. 
 
Methodology 

The methodology followed in modeling and controlling 
home appliances in the proposed HEMS framework is 
described in this section. Note that the modeling phase is 
explained in detail in the literature [12]. 
A. Thermal Load Modeling 
 Thermal loads consume the most power in a typical 
household, specifically during summer. To schedule thermal 
loads, many control aspects must be considered to realize 
effective scheduling. The proposed thermal load models 
utilize the medims’ physical information (air or water density 
and capacity), and inputs settings to generate a load profile 
for the given appliance in a certain period. 

 House heater model 
 All thermal loads considered in this paper are based on 
the house heating system, which utilizes information about 
the physical characteristics of rooms, the external 
temperature, and several differential equations. The 
empirical system contains three subsystems represented by 
three differential equations, i.e., the heater subsystem, the 
house subsystem, and the thermostat. Here, a conditional 
controller is used to represent the thermostat, while the 
other two subsystems are represented by these equations 
[13]. 

a) Heater subsystem 
 In the first subsystem, the change in heat is calculated 
according to the temperature difference and the room’s 
physical parameters. The change in heat is expressed as 
follows: 

(1)   
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 is the heat change rate, Troom is the current room 

temperature, Theater is the heating element’s outcoming air 
temperature, Mdot is the flowrate of the air mass in the 
heater (kg/hour), and c is the air’s heat capacity at a fixed 
pressure. 
 b) House subsystem 
  The indoor temperature shift is determined by the house 
subsystem using heat exchange obtained by Eq. 1. The 
indoor temperature shift can be calculated as follows: 
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where Mair is the internal air mass, and Req is the equivalent 
thermal resistance in the room. 
 

 Note that user tolerance is governed by the following 
two temperature limits. 
  (4) ଵܶ ൌ 	ݐ݊݅ݐ݁ݏ	 െ  ݈݁ݒ݈݁	݁ܿ݊ܽݎ݈݁ݐ	
  (5) ଶܶ ൌ 	ݐ݊݅ݐ݁ݏ	   ݈݁ݒ݈݁	݁ܿ݊ܽݎ݈݁ݐ

The thermostat of the heating model will work like 
regular thermostats; turning the heater on or off depending 
on the internal temperature, making sure to stay within the 
comfort range of the user which is defined by T1 and T2. 
The flowchart of the heating system program is shown in 

Fig. 1. 
 Air conditioner model 

 Air conditioners (AC) reduce the temperature of a room 
using the principals of matter state changes. Here, when a 
gas transforms from liquid to gas, heat is absorbed, which is 
released when it goes back to the liquid state. Absorbing 

 
Fig.1. Heating system flowchart 
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heat cools the surrounding environment, which is the 
primary purpose of an AC unit [14]. 
 The proposed HEMS’s air conditioner model was the 
opposite in terms of the job and the thermostat. Note that 
small alterations were made when initializing the thermostat 
model and the model’s constants. The AC model’s results 
are highlighted in the Results and Discussion section. 

 Refrigerator model 
 Refrigerators work like ACs; thus, the refrigerator 
controller model is similar to the AC model. However, some 
alterations were implemented in refrigerator model, i.e., 
physical constants, temperature setpoint limits, and the 
physical dimensions [15] [16]. Here, air density and specific 
heat capacity are unchanged because the medium is still 
air. Table 1 shows the constant values used in the 
refrigerator model. 

 Water heater 
 Water is the heat transfer medium in water heaters. A 
typical tank-based water heater contains a large, insulated 
tank with one or two metal rods (i.e., heating elements), 
each of which is controlled by a separate thermostat. In 
addition, two pipes are connected to the tank: one for warm 

exiting water, and one for cold input water. When filled with 
cold water, the tank’s higher rod is turned on to warm the 
top half of the water. Then, the lower rod follows until the 
water reaches the required temperature. Note that the 
heater model’s physical constants were taken from a real 
experimental water heater used in a lab. Here, the fluid 
density and specific heat capacity are those of water (Table 
1). 
B. Shiftable Load Controller Models 
 Loads that can be shifted to a different time slot 
depending on the demand are referred to as shiftable loads. 
Such loads typically have a certain operation cycle with a 
pre-determined, uninterruptable duration for a successful 
running cycle. Two examples of such devices are washing 
machines and dishwashers. They are represented in a 
simple manner in this house controller. Here, users can set 
an initial working pattern for each appliance. This pattern 
provides insight into the likelihood of an appliance’s 
operation timing (start and end time, in addition to the 
typical cycle duration and rated power consumption of the 
appliance). 

 

Table 1.  Physical constants of thermal appliances  
Physical property Air 

conditioner 
Refrigerator  Water heater Air heater 

Density of fluid (kg/m^3) 1.2250 1.2250 1.0 1.2250 
Temperature of fluid (˚C) 10 -5 75 50 

Thermal conductivity 
(J/sec/m/C) 

0.78 
(Glass 
wool) 

0.05 
(Polyurethane) 

0.05 
(Polyurethane) 

0.78 (Glass wool) 

Dimensions (w . l . h (m)) 10x 30 x 4 0.6x 0.6 x 1.8 0.450 x ∅ x 
0.559 

10 x 30 x 4 

Flowrate (kg/min) 60 0.6 0.12 60 
Wall thickness (m) 0.2 0.11 0.0381 0.2 

Specific heat capacity (J/kg-
K)  

1005.4  1005.4 1005.4 

 
 

C. Full House Controller 
 Combining the above models provides a full house 
controller comprising process functions executed according 
to the setup parameters (Fig. 2). Note that thermal and 
shiftable loads have different setup parameters. For 
example, shiftable loads do not require tolerance levels or 
set points, and thermal loads do not typically have an 
operation duration. 
 
D. Load Scheduling Algorithms 
 The main objective of the scheduler is to reduce the 
total house energy costs and avoid peak prices. The DR 
signal is sent to the house as an input indicating the prices 
per minute for the next day. The cost of the full house’s 
power consumption or the objective function is calculated 
as (Eq. 6) shows: 
ݐݏܥ (6) ൌ ∑ ∑ ܵ ൈ  ൈ 			ݎ


ୀଵ


ୀଵ  

 

where i is an appliance counter, j is the minute of the day, 
ܵ is the total on status of the appliance (binary), ݎ is the 

power rating of the ith appliance converted from KWh to 
KW*minute, and 	is the ToU DR price at the jth minute 
(AED/KW*min). 
 

 The number of appliances considered in this study was 
five, where three are thermal loads and two are shiftable 
loads. The input to the cost function is a vector containing 
all setpoints of the thermal loads, comfort levels, and 
starting time for the shiftable loads, as expressed in Eq. 7: 
ݔ (7)  ൌ ሾܹܹܦ,ܯ, ,ோݐ݊݅ݐ݁ݏ  ,ோ݁ܿ݊݁ݎ݈݁ݐ

,௧	௪௧ݐ݊݅ݐ݁ݏ	 ,௧	௪௧݁ܿ݊ܽݎ݈݁ݐ  
,௧	௪௧݁ܿ݊ܽݎ݈݁ݐ ,ݐ݊݅ݐ݁ݏ ܿ݊ܽݎ݈݁ݐ ݁ሿ 

where WM is the starting time slot for the washing machine, 
DW is the starting time slot for the dishwasher, ݐ݊݅ݐ݁ݏோ 
and ݁ܿ݊݁ݎ݈݁ݐோ are the setpoints and tolerance ranges of 
the refrigerator, ݐ݊݅ݐ݁ݏ௪௧	௧ and 
 ௧ are the setpoints and tolerance for the	௪௧݁ܿ݊ܽݎ݈݁ݐ
water heater, and 	ݐ݊݅ݐ݁ݏ and ܿ݊ܽݎ݈݁ݐ ݁ – the 
setpoints and tolerance for the AC, respectively. 
 

 
Fig.2. Structure of the complete house controller model 
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 From Eq 7, it is clear that the problem dimension is 
eight because each individual appliance model has 
additional input parameters, e.g., initial temperatures and 
occupancy. Note that shiftable loads are uninterruptable, 
and their working cycle is fixed and cannot exceed typical 
limits. The upper and lower limits of the input vector (Eq. 7) 
are defined as follows: 
݈ܾ	 ൌ 	 ሾ1	1	2	1	50	3	19	1	ሿ	
	ܾݑ ൌ 	 ሾ1440 െ 90	1440 െ 60	5	3	80	10	24	3	ሿ 
where 1440 is the number of minutes in a day, and 90 and 
60 are the working cycles of the washing machine and 
dishwasher, respectively. The main objective of this 
optimization problem is to minimize the consumption cost in 
DR programs; thus, the optimization problem can be 
expressed as follows. 
(8) ݉݅݊ሺ∑ ∑ ܵ ൈ  ൈ ሻ			ݎ


ୀଵ


ୀଵ  

 The flowchart of the scheduling process is shown in Fig. 
3. To run the optimizers, the same input parameters are 
used for each algorithm, which is the initial setup vector for 
the appliances. The controller is called using the initial 
parameters, an initial load profile is evaluated, the cost is 
calculated, and then, if the cost is not the lowest, the 
optimizer is called to generate a new setup vector, which 
produces a lower cost when passed to the controller. This 
process is reseated until the minimum cost is obtained while 
maintaining the user’s tolerance level. 
 PSO, GWO, and WOA are nature-inspired metaheuristic 
algorithms used by the optimizer. Applying these algorithms 
in the system (Fig. 3) produces the new low-cost load 
profile of the appliances. The same house controller or 
appliance models were used, only the optimization method 
of the scheduler was different for every trial. 
 

 
Fig.3. House scheduling and optimization flowchart 
 

a) PSO 
 The PSO algorithm mimics the behavior of bird swarms 
when finding food, and the same applies to the WOA and 
GWO, which mimic the behavior of whales and wolves 
hunting for food, respectively. These algorithms have 
specific position and velocity equations, where the position 
of the closest particle (a bird, whale, or wolf) to the prey is 
calculated and updated in each iteration. The closer the 
particle is to the prey, the closer the optimizer is to the 

optimum solution. The position and velocity equations for 
the three algorithms are given as follows: 

(9)	 ܸ
ାଵ ൌ ߱ ൈ ܸ

  ଵܥ ൈ ଶ݀݊ܽݎ ൈ ቀܺ௦௧ೕ
 െ ܺ

ቁ 

ଶܥ ൈ ଶ݀݊ܽݎ ൈ ൫ ܺ௦௧
 െ ܺ

൯ 
(10) ܺ

ାଵ ൌ ܺ
  ܸ

ାଵ 

where ܸ
ାଵ is the velocity of the jth particle at the i+1th 

iteration, ܸ
 is the same velocity at the ith iteration, ݀݊ܽݎଵ 

and ݀݊ܽݎଶ are random values in the range [0, 1], and ܥଵ 
and ܥଶ are acceleration constants, respectively. 
 Here, new position ܺ

ାଵ is evaluated by adding the 

evaluated velocity to the current position ܺ
 of the jth particle 

in the ith iteration [17]. 
b) WOA 

 The WOA’s position vector is calculated using the 
previous position and best possible position. Here, no 
velocity is involved; however, the distance of the current 
whale from the prey is used to evaluate the new position. 

ሬሬԦܦ (11) ൌ หܥԦ. Ԧܺ௦௧ െ 	 Ԧܺห 
(12) Ԧܺାଵ ൌ 	 ห Ԧܾܺ݁ݐݏ െ	ܣԦ.  ሬሬԦหܦ
Here, i is the iteration, Ԧܺ௦௧ is the best position, 	 Ԧܺ is the 
current position vector, and ܣԦ and ܥԦ are coefficient vectors 
calculated in Eq. 13 and Eq. 14, respectively [18]. 

Ԧܣ (13) 	ൌ 2 Ԧܽ. Ԧݎ 	െ 	ሬܽሬሬԦ 
Ԧܥ (14) ൌ  Ԧݎ2

c) GWO 
 GWO, which uses the same general equations as the 
WOA with a slight difference, is expressed as follows: 

(15) Ԧܺାଵ ൌ
ሬԦభାሬԦమାሬԦయ

ଷ
 

where Ԧܺଵ, Ԧܺଶ, and Ԧܺଷ are the positions of the three most 
dominant wolves in the pack [19]. 
 In this study, the constants of the three algorithms were 
set according to acceptable values found in the literature 
(Table 2) [20], [18], [19]. 
 
Table 2.  Algorithm constants and weights 

Algorithm Population 
size 

Maximum 
iterations

Other constants 

PSO 50 100 wMax = 0.9;  wMin = 0.2 
c1 = 2;            c2 = 2 

WOA 50  100 r1=rand()   r2=rand(); b=1            
l=(a2-1)*rand+1; 
a2=-1+t*((-1)/Max_iter) 

GWO 50 100 r1=rand();     r2=rand(); C1=2*r2; 
C2=2*r2; 
C3=2*r2; 

 

E. Special Testing Scenarios 
 To further test the proposed system, a baseline was 
created to compare the results of the optimizer. This 
baseline was a manual house profile, where the cost of the 
house for 24 hours is calculated based on three occupancy 
and price schemes.  The occupancy variation realistically 
mimics the house occupancy during different days of the 
week. The first occupancy scheme included one period 
where the user was not in the house, the second included 
two, and the third included three. Figure 4 shows the 
baselines for the occupancy schemes. The first occupancy 
scheme is when the house is vacant once, the second is 
when it is vacant twice, and the third is when it is 
unoccupied at three different periods. Alternatively, Figure 5 
shows the baselines for the price schemes during three 
different types of day: workdays, weekends, and school 
holidays. Here, the price signals vary from low to high 
during different periods depending on the demand at the 
given time. 
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Fig.4. Occupancy schemes for testing 
 
 

 
Fig.5. Price schemes for testing 
 

 
Fig.6. Baseline daily cost (AED) for three occupancy schemes 

 
Fig.7. Full house controller profile 
 

 The cost per minute in the day was calculated for 
different combinations of price and occupancy scenarios to 
create baselines for comparison. Figure 6 shows an 
example of the cost obtained using price scheme 1 and the 
three occupancy schemes. 
Results and Discussion 
 

A. House Controller Model 
 As discussed previously, the combination of appliance 
models provides full house controller model. Figure 7 shows 
the output profiles of all modeled appliances, including the 
temperature in thermal loads and on/off cycles of shiftable 
loads. The thermal loads operated as expected, and the 
temperature fluctuated within the acceptable limit. Note that 
the room heater was excluded because this is not a 
common appliance in an Emirati household. The washing 
machine was only used once for 90 minutes, while the 
dishwasher was run twice for 30 minutes. More details 
about the controller results for each appliance can be found 
in the literature [21]. 
B. Load Scheduling and Optimization 
 To reduce the total cost, the appliances were scheduled 
according to the three occupancy schemes and the 
minutely, and full day costs were recorded and compared to 
the baseline. Here, PSO, WOA, and GWO were used to 
solve the optimization problem. Figure 8, Figure 9, and 
Figure 10 show the costs per minute of the loads after 
scheduling using PSO, WOA, and GWO with the three 
occupancy schemes and price scheme 1. As can be seen, 
for all three cases, the cost using the scheduler was always 
less than the baseline. 
 
 As can be seen from the figures, the cost was reduced 
with scheduling. Table 3 shows the corresponding 
appliance setup parameters for optimum cost reduction 
obtained by each algorithm using occupancy scheme 1 and 
price scheme 1. The best input parameters were similar for 
nearly all algorithms for the thermal loads (x(3) - x(8)). The 
first two elements of the input vector represent the starting 
point of the shiftable loads’ cycle, which are typically 
discrete, and these represent the time sample (minute) 
when the shiftable zload cycle will start. Their values were 
either very small (at the beginning of the day) or very high 
(at the end of the day), which are low peak price periods. 
  Table 4 summarizes the cost reduction percentages 
using all algorithms relative to the baseline for a 
combination of nine occupancy and price scenarios. 
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Fig. 8. Manual (baseline) controller cost vs PSO cost 
 

 
Fig. 9. Manual (baseline) controller cost vs WOA cost 

 
 
Fig.10. Manual (baseline) controller cost vs GWO cost 

Table 3.  Optimum appliance parameters using price scheme 1 and 
occupancy scheme 1 

Algorithm Xbest (appliances setpoints) 
[WM, DW, Ref_set, Ref_tol, 

Heater_set, Heater_tol, AC_set, 
AC_tol] 

Ybest 
(cost in 
AED) 
 

Cost  
Reduction  

baseline [1080, 60, 4, 2, 70, 2, 18, 2] 4.29 - 

PSO [154, 269, 5, 3, 50, 5, 24, 1] 2.64 38.59% 

WOA [1, 1380, 5, 1, 50, 3, 24, 1] 2.68 37.55% 

GWO [1225, 1307, 5 ,1, 50, 5, 24, 1] 2.64 38.59% 

 

As can be seen, the cost reduction was consistent with 
all three algorithms, where price scheme 2 obtained the 
largest reduction. Note that that GWO obtained the largest 
reduction in nearly all scenarios, representing a slight 
difference to the results obtained by PSO. The WOA 
obtained the lowest cost reduction compared to the other 
two algorithms. Across all scenarios and algorithms, the 
largest reduction was obtained using price scheme 2 and 
occupancy scheme 1, where 44.64% cost reduction was 
obtained, and the lowest was obtained by the WOA using 
occupancy scheme 4 and price scheme 1. 
 Overall, despite the slight difference in results, we 
consider the results to be consistent and comparable, which 
proves the reliability of the proposed system and house 
controller model. A convergence test was then conducted to 
further test the system’s consistency. 
 

C. Consistency 
 To evaluate scheduling consistency when a single 
algorithm was applied, all three algorithms were run multiple 
times, and the minimum cost was recorded at each time. It 
is important for the system to be stable, i.e., giving the 
same expected minimum for the same input parameters. 
Figure 11, Figure 12, and Figure 13 show the convergence 
curves for each algorithm repeated multiple times with the 
same initial values. 

 
Fig.11. PSO consistency test 
 

 
Fig.12. WOA consistency test 

 As can be seen, PSO and GWO were very consistent, 
whereas the WOA was inconsistent. Even though WOA has 
been tested on many multimodal systems and proven to be 
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very powerful, it did not perform as expected with this 
system. Selecting constants for an algorithm can affect the 
results significantly, and WOA has many constants that are 
generated randomly or change randomly over time. We 
believe that tuning these parameters could improve the 
results. Generally, the results obtained by GWO were 
comparable to those obtained by PSO which is a well-
known, reliable algorithm. These algorithms provided nearly 
identical results relative to the optimum cost and best input 
parameters. 
 

 
Fig.13. GWO consistency test results 
 
 

Table 4.  Cost reduction percentages comparison between baseline 
and PSO, WOA, and GWO 

Algorithm  Occupancy 
scheme 1 

Occupancy 
scheme 2 

Occupancy 
scheme 3 

PSO 

Price scheme 1 38.59 % 26.31 % 21.88 % 

Price scheme 2 43.74 % 39.54 % 29.60 % 

Price scheme 3 34.25 % 24.60 % 24.58 % 

WOA 

Price scheme 1 37.55 % 25.31 % 20.32 % 

Price scheme 2  42.95 % 39.49 % 29.56 % 

Price scheme 3 34.46 % 24.57 % 24.06 % 

GWO 

Price scheme 1 38.59 % 26.31 % 21.78 % 

Price scheme 2  44.64 % 40.96 % 29.56 % 

Price scheme 3 34.46 % 22.71 % 24.95 % 
 

Conclusion 
 In this paper, we have proposed a full house controller 
(HEMS) and load scheduler for use in DR and load 
scheduling applications using PSO, GWO, and the WOA. 
Empirical models of thermal loads were used to produce a 
load profile to predict temperature based on different setup 
parameters, e.g., the setpoints and tolerance ranges, in 
addition to other physical factors. The proposed model 
generates optimal input parameters (setpoints and 
tolerance ranges) for each appliance to reduce total 
consumption costs, which is significant because most 
comparable models only control the on/off status of the 
loads. The three algorithms provided very similar results, 
which verifies the consistency of the system and objective 
function (Eq. 6). In future, we plan to implement additional 
appliances and DR schemes to the system to make it more 
dynamic, realistic, and cater to more variable factors set by 
the user, such as special occasions when the house is extra 
occupied, or other comfort related factors. 
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