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Highly Nonlinear Systems Estimation using Extended and 
Unscented Kalman Filters 

 
 

Abstract. The main idea of this study is to evaluate the estimation performance of extended and unscented Kalman filters (EKF and UKF). So, these 
latter are introduced to estimate the dynamic states of a similar model operating with identical covariance matrices in the same situation. The mean 
square error (MSE) criterion is used to quantify the estimation error between the actual and the estimated values. The simulation results obtained 
with Matlab/ Simulink software confirm the superiority and efficiency of UKF over EKF, especially when the system is highly non-linear under process 
and measurement noises, such is the case of the inverted double pendulum mounted on a cart (DIPC).  
 
Streszczenie.). Główną ideą tego badania jest ocena wydajności estymacji rozszerzonych filtrów Kalmana (EKF i UKF). Te ostatnie zostały 
wprowadzone w celu oszacowania stanów dynamicznych podobnego modelu działającego z identycznymi macierzami kowariancji. Kryterium błędu 
średniokwadratowego (MSE) służy do ilościowego określenia błędu oszacowania między wartościami rzeczywistymi i szacunkowymi. Wyniki 
symulacji uzyskane za pomocą oprogramowania Matlab i Simulink potwierdzają wyższość i wydajność UKF nad EKF, zwłaszcza gdy system jest 
wysoce nieliniowy. (Nieliniowe oszacowanie systemów przy użyciu filtrów Kalmana) 
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Introduction 
In many scientific and teaching fields, the automatic 

systems often use special case studies, which are 
representative of large classes of applications [1, 2]. 
Furthermore, with experience, the knowledge of these 
cases has been refined and they now provide an ideal basis 
for a valid comparison of different approaches. The inverted 
pendulum is one of the most important systems of control 
engineering and is the subject of much research [3, 4]; 
because such systems can be used to accurately describe 
many real-life problems, such as balancing artificial limbs, 
launching rockets, trajectory control, etc. In fact, a double 
inverted pendulum on a cart (DIPC) system is an extension 
of the only inverted pendulum mounted on a cart with a high 
level of nonlinearities, which is widely used for testing new 
control methods [5, 6]. 
 The quality of a sensorless drive is mostly determined 
by the quality of its state observer. The Kalman filter based 
estimation technique was originally developed for linear 
systems in the presence of noise [7], but later the extended 
Kalman filter (EKF) which applies the Kalman filter to 
nonlinear system by linearizing all nonlinear models, has 
become a most widely used estimation algorithm for 
estimating the state variables of nonlinear systems [5, 6].  
However, in practical applications, the EKF is difficult                        
to implement, difficult to tune, and the reliability is limited     
[8-10] due to its many drawbacks such as the need for a 
Jacobi matrix computation which provides a high 
computational cost. Though, this can lead to significant 
errors for highly nonlinear systems due to the propagation 
of uncertainty in the nonlinear system. As the sampling time 
increases, the precision of the estimate decreases 
considerably [10, 11]. 
 Whereas, the performance of the EKF is poor in some 
situations, its performance is acceptable if the system 
nonlinearity is not severe. Since a DPIC is a highly non-
linear system [1, 3], so to overcome these limitations, the 
Unscented Kalman Filter (UKF) as a new variant of the 
Kalman filter was proposed by Julier and Uhlmann in 1996 
[6]. Their idea is to generate several sampling points 
(Sigma points) around the current state estimate based on 
its covariance. Using an unscented transformation (UT), the 
UKF can estimate an accurate state values without the 
linearization process and it is not necessary to calculate 

Jacobian. In fact, the UKF algorithm has superior 
implementation properties to the EKE [11, 12].  
 The authors in reference [4] found the UKF easier to 
approximate the Gaussian distribution associated with each 
state vector variable, rather than approximated nonlinear 
function transformation. Use unscented Kalman filter (UKF) 
based estimation technique a set of points, called sigma 
points, are generated which track the true mean and 
covariance of the process [4, 13].  

Indeed, the main of this study is to estimate all the state 
variables of the DPIC and to compare the dynamic state 
estimation in order to evaluate the performances of two 
different estimators, namely: the extended Kalman filter and 
the unscented Kalman filter, especially when they are 
particularly applied for a highly non-linear system with the 
presence of state and measurement noises. UKF has been 
shown to be able to predict the state of such system and is 
more accurately than EKF.  
 This paper is organized as follows. First, in section II, we 
provide the theoretical background of Extended and 
Unscented Kalman Filters algorithm. Next, the continuous 
and discrete DPIC models are presented in section III. 
Then, estimated results for different states using EKF and 
UKF are shown in section IV. Finally, in section V some 
conclusions to this paper are discussed. 
 

The Kalman Filter (KF)  
 The Kalman filter introduced by Rudolf Emil Kalman in 
1960 [5], is one of the most interesting mathematical 
developments in the theory of linear estimation. It is a state 
observer in a stochastic environment, when the variances of 
the noises are known; it is a linear estimator minimizing the 
variance of the estimation error. In this section we will focus 
on the two variants of the Kalman filter, namely the EKF 
and the UKF. 
 

Extended Kalman Filter (EKF) 
 The extended Kalman filter is an optimal recursive 
estimation algorithm for nonlinear systems that are 
disturbed by random noise [13]. In this paper we look for 
finding the best linear estimate of the state vector xk of the 
DPIC which evolves according to the following stochastic 
discrete-time nonlinear dynamic: 
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where f(.) is the state evolution function representing the 
machine dynamics, h(.) represents the relationship between 
the state vector and the observation yk, uk the machine input 
at time k and wk and vk are the process and measurement 
white Gaussian noise vectors with zero mean and with  

associated covariance matrices T
k kQ E w w    and 

T
k kR E v v     , respectively. 

To allow application of Kalman filter to the nonlinearity (1), 
this later must be linearized by using first order Taylor 
approximation near a desired reference 

point ˆ ˆ ˆ( , 0, 0)k k kx w v  , which gives us the following 

approximated linear model [14]: 
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where , ,k k kF W H and Vk  are the Jacobean matrices defined 

by : 
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Thus, the EKF algorithm can be given by the following 
recursive equations: 

(4)  
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Where 1/ˆk kx  is the a priori state prediction vector, 

1/ 1ˆk kx   is the a posteriori state prediction vector, 1/k kP  is 

the a priori prediction error covariance matrix, 1/ 1k kP   is the 

a posteriori prediction error covariance matrix and kK is the 

Kalman gain. 
 
Unscented Kalman filter (UKF) 
 UKF is an enhancement over the EKF algorithm. In 
reference [10] S. J. Julier and J. K. Uhlmann proposed 
completely new solution of estimation theory problem based 
on Unscented Transformation. These authors found that it 
is possible to simplify the UKF algorithm by eliminating the 
need for calculating Jacobians at each step and working 
point. This filter, like its classical form is based on two 
cycles performed procedures: prediction and correction. For 
the general formulation of the UKF, the n-dimensional state 
with mean   and covariance   are approximated by (2n+1) 
weighted sigma points.  With respect to the nonlinear model 
describing by Eq. (1), the estimation of states using UKF 
algorithm [1-4, 15] can be done as follows: 

Step 1: Initialization 0 0 0 0/ /x̂  , P  , R and Q    

Step 2: Sigma points Calculation 

Given the state vector and the covariance matrix 
estimates k / k k / kx̂  and P   at time k respectively, we calculate 

a set of 2n+1 sigma points xi (with corresponding weights   
Wi ) can be calculated as follows:   

(5)  
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where n is the state vector dimension; λ is a positive scaling 
parameter. 

Step 3: State Prediction (Time update) 
Using the sigma points calculated in the first step, the state 

1/ˆk kx   and the covariance matrix 1/k kP   are predicted as: 

(6)  
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These updated points are evaluated one by one using 
measurement function defined in Eq. (1) as 

(7)  
1 1

2

1 1
0

i i
k / k k / k k

n
i i

k / k k / k
i

y h( x ,u )
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Step 4: Correction (Measurement update equations) 
Cross-covariance of the state and measurements and 
measurement covariance matrix can be obtained as: 

(8)  
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After the Kalman gain Kk+1 and the state 1/ 1ˆk kx   , covariance 

matrix 1/ 1k kP   ,can be calculated as follows: 

 (9)  
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where 1ky  is the set of measurement at time tk 

 In order to demonstrate the effectiveness of UKF 
algorithm compared to EKF algorithm, in the next section 
we tried to estimate all the state variable of a DIPC using 
these two Kalman filters variants.  

 

Double inverted Pendulum mathematical model  
Consider a double pendulum which is mounted to a cart, 

as shown in Fig. 1. The system consists to a cart which can 
move right or left on the rail freely, a lower pendulum 
hanged on the cart, and an upper pendulum, which is linked 
with the other end of the lower pendulum [15-17]. 
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Fig.1. Schematic diagram of double inverted pendulum system.  
 
 It is given that no friction exists in the pendulum system 
then the dynamic equations of the double inverted 
pendulum system are obtained from Lagrange’s equation of 
motion as:  

(10) 
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These dynamic equations (10) can be put in the following 
compact form: 

(11)  
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and 
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The position x and velocity x  of the cart, the angle 1  and 

angular velocity 1  of the lower pendulum and the angle 2  

and angular velocity 2  of the upper pendulum are the 

state vector, then we can write: 
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Then the nonlinear dynamic model of the DIPC can be put 
in the continuous general nonlinear representation as 
follows: 
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This continuous non-linear model of DIPC (Eq. 15) must be 
discredited using Euler forward method, which can be 
written in non-linear discrete stochastic form as follows:  
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Where the explicit expressions of ( ),  ( )  and  ( )k k k   , 
are given as follows: 
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where Ts is the sampling time. 
 
Simulation and results 
 This section shows the results of estimated states using 
EKF and UKF as discussed in section II. The parameters of 
the double inverted pendulum on cart used in the simulation 
are given by:  M=1.5Kg, m1 =0.5Kg, m2= 0.75Kg, L1=0.5m, 
L2=0.75m and g=9.81m/s2. In addition, the simulation study 
was tested under Matlab/Simulink software environment 
with sampling time Ts = 0.001s.   

 Estimated and actual states (cart position, upper and 
lower pendulum angle and angular velocity) of DIPC are 
shown in Figures 2 to 7 which verify that estimated states 
are almost identical to the actual values and also show the 
similar behaviour. 

 

 
Fig. 2. Actual, measured and estimated values of cart position x  

    

Fig. 3. Actual, measured and estimated values of cart velocity  
 

 
Fig. 4. Actual, measured and estimated values of lower pendulum 
angle θ1  
 

 
Fig. 5. Actual, measured and estimated angular velocity of lower 
pendulum  

 
Fig. 6. Actual, measured and estimated upper pendulum angle θ2  

 
Fig. 7. Actual, measured and estimated values of upper pendulum 
angular velocity  
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Fig. 8. Estimation errors of the UKF and the EKF  

 

 
Fig. 9. Mean-square errors of the UKF and the EKF  
 

The mean square error (MSE) criterion is used to 
quantify the estimation error. The simulation results shown 
in Fig.2, Fig.4 and Fig.6 demonstrate that the UKF 
outperforms the EKF when estimating the lower angle, the 
upper angle and the cart position. On the other hand, these 
two filters have almost the same performance when 
estimating their respective time derivatives as shown in 
Fig.3, Fig.5 and Fig.7. 

The results in Fig. 8 and Fig. 9 above show that the 
unscented Kalman filter is more accurate than the extended 
Kalman filter. The accuracy is evaluated by taking the MSE 
between the estimated state value and the actual value of 
each variable state in presence of system process and 
measurement noises. 

 
Conclusion  
 In this paper, the dynamic equations of the double 
inverted pendulum system are obtained from Lagrange’s 
equation of motion. Using the developed discrete 
mathematical model of DIPC, all their dynamic states are 
estimated by two varieties of Kalman filters, extended and 
unscented Kalman filters. The UKF consistently achieves a 
better level of accuracy than the EKF at a comparable level 
of complexity. As illustrated in previous studies, the EKF 
and UKF are both sufficient tools for non linear systems. 
However, as verified by the simulation results, the UKF 
algorithm is very promising method compared to EKF. The 
estimation error and the MSE values illustrate that UKF has 
slightly better results than the EKF. The results obtained by 
simulation shows how UKF can contribute to improving the 
performance of the state estimation better than the EKF.  
 State estimation with EKF and UKF methods can be 
used for monitoring and controlling the dynamic state 
variables of various strongly nonlinear systems. 
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